Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1973 Jul;12(1):39–48. doi: 10.1128/jvi.12.1.39-48.1973

Regulation of Early mRNA Synthesis in Bacteriophage T4-Infected Bacteria: Dependence on Bacteriophage-Specific Protein Synthesis

Christina Bolund 1, Ola Sköld 1
PMCID: PMC355227  PMID: 4579824

Abstract

The mechanism of the transcriptional turn-off was studied for those species of mRNA in T4 infection which specify early phage proteins. Total synthesis of these early RNA species was determined by short-time labeling with uracil-5-3H after the infection of Escherichia coli B with DNA-negative, conditional lethal mutants, which produce no late mRNA under nonpermissive conditions. With both amber and temperature-sensitive mutants a decrease in incorporation into early RNA by more than 90% was observed within 15 min after infection. Analysis by thin-layer chromatography showed uracil-5-3H to enter nucleotide pools throughout the infection cycle. The observed decrease in early RNA synthesis was dependent on protein synthesis, since it could be prevented by chloramphenicol. By varying the time of chloramphenicol addition, the effect of this regulatory protein(s) was found to appear at 3 to 4 min and reached its full extent at 10 to 15 min after infection. The turn-off of transcription of a defined early gene was studied by 5-fluorouracil (FU) rescue of an early, DNA-negative, amber mutant (gene 1, deoxynucleotide kinase) at different times after infection. DNA synthesis could be rescued by FU addition early after infection, but not after 12 min. 5-fluorouracil was efficiently taken up into the nucleotide pools also at late times, as shown by thin-layer chromatography. After incubation in the presence of chloramphenicol from 3 min after infection, DNA synthesis could be rescued as late as 45 min after infection. Thus, when protein synthesis was blocked during the early period of infection, the shut-off of transcription of the studied early gene was prevented.

Full text

PDF
39

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolle A., Epstein R. H., Salser W., Geiduschek E. P. Transcription during bacteriophage T4 development: requirements for late messenger synthesis. J Mol Biol. 1968 Apr 28;33(2):339–362. doi: 10.1016/0022-2836(68)90193-9. [DOI] [PubMed] [Google Scholar]
  2. Bolund C., Sköld O. Formation of RNA in T4 phage-infected bacteria: transcriptional regulation of early enzyme synthesis. Virology. 1971 Feb;43(2):390–402. doi: 10.1016/0042-6822(71)90311-4. [DOI] [PubMed] [Google Scholar]
  3. Cohen S. S., Flaks J. G., Barner H. D., Loeb M. R., Lichtenstein J. THE MODE OF ACTION OF 5-FLUOROURACIL AND ITS DERIVATIVES. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1004–1012. doi: 10.1073/pnas.44.10.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Duckworth D. H., Bessman M. J. The enzymology of virus-infected bacteria. X. A biochemical-genetic study of the deoxynucleotide kinase induced by wild type and amber mutants of phage T4. J Biol Chem. 1967 Jun 25;242(12):2877–2885. [PubMed] [Google Scholar]
  5. EDLIN G. GENE REGULATION DURING BACTERIOPHAGE T4 DEVLOPMENT. I. PHENOTYPIC REVERSION OF T4 AMBER MUTANTS BY 5-FLUOROURACIL. J Mol Biol. 1965 Jun;12:363–374. doi: 10.1016/s0022-2836(65)80260-1. [DOI] [PubMed] [Google Scholar]
  6. Gurgo C., Apirion D., Schlessinger D. Polyribosome metabolism in Escherichia coli treated with chloramphenicol, neomycin, spectinomycin or tetracycline. J Mol Biol. 1969 Oct 28;45(2):205–220. doi: 10.1016/0022-2836(69)90100-4. [DOI] [PubMed] [Google Scholar]
  7. Hosoda J., Levinthal C. Protein synthesis by Escherichia coli infected with bacteriophage T4D. Virology. 1968 Apr;34(4):709–727. doi: 10.1016/0042-6822(68)90092-5. [DOI] [PubMed] [Google Scholar]
  8. Mathews C. K. Biochemistry of deoxyribonucleic acid-defective amber mutant of bacteriophage T4. I. Ribonucleic acid metabolism. J Biol Chem. 1968 Nov 10;243(21):5610–5615. [PubMed] [Google Scholar]
  9. Neuhard J., Thomassen E. Turnover of the deoxyribonucleoside triphosphates in Escherichia coli 15 T during thymine starvation. Eur J Biochem. 1971 May 11;20(1):36–43. doi: 10.1111/j.1432-1033.1971.tb01359.x. [DOI] [PubMed] [Google Scholar]
  10. Rosen B., Rothman F., Weigert M. G. Miscoding caused by 5-fluorouracil. J Mol Biol. 1969 Sep 14;44(2):363–375. doi: 10.1016/0022-2836(69)90181-8. [DOI] [PubMed] [Google Scholar]
  11. Salser W., Bolle A., Epstein R. Transcription during bacteriophage T4 development: a demonstration that distinct subclasses of the "early" RNA appear at different times and that some are "turned off" at late times. J Mol Biol. 1970 Apr 28;49(2):271–295. doi: 10.1016/0022-2836(70)90246-9. [DOI] [PubMed] [Google Scholar]
  12. Sercarz E. The production of phage structural proteins in single cells of Escherichia coli infected with phage T4. Virology. 1966 Feb;28(2):339–345. doi: 10.1016/0042-6822(66)90158-9. [DOI] [PubMed] [Google Scholar]
  13. Sköld O. Regulation of early RNA synthesis in bacteriophage T4-infected Escherichia coli cells. J Mol Biol. 1970 Nov 14;53(3):339–356. doi: 10.1016/0022-2836(70)90070-7. [DOI] [PubMed] [Google Scholar]
  14. WIBERG J. S., BUCHANAN J. M. STUDIES ON LABILE DEOXYCYTIDYLATE HYDROXYMETHYLASES FROM ESCHERICHIA COLI B INFECTED WITH TEMPERATURE-SENSITIVE MUTANTS OF BACTERIOPHAGE T4. Proc Natl Acad Sci U S A. 1964 Mar;51:421–428. doi: 10.1073/pnas.51.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WIBERG J. S., DIRKSEN M. L., EPSTEIN R. H., LURIA S. E., BUCHANAN J. M. Early enzyme synthesis and its control in E. coli infected with some amber mutants of bacteriophage T4. Proc Natl Acad Sci U S A. 1962 Feb;48:293–302. doi: 10.1073/pnas.48.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Young E. T., 2nd, van Houwe G. Control of synthesis of glucosyl transferase and lysozyme messengers after T4 infection. J Mol Biol. 1970 Aug;51(3):605–619. doi: 10.1016/0022-2836(70)90011-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES