Abstract
On CsCl isopycnic centrifugation of the DNA extracted from secondary mouse embryo (ME) cultures grown in the presence of 5-bromodeoxyuridine (BUdR) and 5-fluorodeoxyuridine (FUdR) for 40 h, 10 to 25% of the DNA was found to be unsubstituted, 70 to 80% was bromouracil-hybrid DNA, and 5 to 10% was heavy DNA. These results together with cell number determinations, autoradiography, and Feulgen microspectrophotometry revealed three types of cells in these cultures: (i) 60 to 80% of the cells replicated their DNA once, divided, and then stopped mitotic activity, (ii) 5 to 10% were going through a second round of DNA replication; whereas (iii) 10 to 30% did not replicate DNA during the BUdR-FUdR exposure. After the transfer of these cultures to normal medium (without BUdR-FUdR), up to 20% of the cells resumed DNA synthesis asynchronously within 60 h, but no increase in cell number was observed. BUdR-FUdR-treated cultures, which were infected with polyoma virus in the absence of the thymidine analogues, supported a lytic infection to the same extent as did untreated ME cultures. This was concluded from the similar number of cells, which were induced to synthesize DNA, from the similar replication rate of the viral DNA, from the similar number of cells containing polyoma capsid proteins, and from the similar yields of progeny virus determined by hemagglutination and plaque formation. Thus, BUdR-prelabeled ME cultures are suitable for the investigation of interȧctions of the polyoma and mouse genomes during the lytic infection.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CHUN E. H., LITTLEFIELD J. W. THE REPLICATION OF THE MINOR DNA COMPONENT OF MOUSE FIBROBLASTS. J Mol Biol. 1963 Sep;7:245–248. doi: 10.1016/s0022-2836(63)80004-2. [DOI] [PubMed] [Google Scholar]
- COHEN S. S., BARNER H. D. Studies on the induction of thymine deficiency and on the effects of thymine and thymidine analogues in Escherichia coli. J Bacteriol. 1956 May;71(5):588–597. doi: 10.1128/jb.71.5.588-597.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DJORDJEVIC B., SZYBALSKI W. Genetics of human cell lines. III. Incorporation of 5-bromo- and 5-iododeoxyuridine into the deoxyribonucleic acid of human cells and its effect on radiation sensitivity. J Exp Med. 1960 Sep 1;112:509–531. doi: 10.1084/jem.112.3.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DULBECCO R., FREEMAN G. Plaque production by the polyoma virus. Virology. 1959 Jul;8(3):396–397. doi: 10.1016/0042-6822(59)90043-1. [DOI] [PubMed] [Google Scholar]
- EDDY B. E., ROWE W. P., HARTLEY J. W., STEWART S. E., HUEBNER R. J. Hemagglutination with the SE polyoma virus. Virology. 1958 Aug;6(1):290–291. doi: 10.1016/0042-6822(58)90078-3. [DOI] [PubMed] [Google Scholar]
- Fried M., Pitts J. D. Replication of polyoma virus DNA. I. A resting cell system for biochemical studies on polyoma virus. Virology. 1968 Apr;34(4):761–770. doi: 10.1016/0042-6822(68)90097-4. [DOI] [PubMed] [Google Scholar]
- HAKALA M. T. Mode of action of 5-bromodeoxyuridine on mammalian cells in culture. J Biol Chem. 1959 Dec;234:3072–3076. [PubMed] [Google Scholar]
- Haemmerli G., Sträuli P., Schlüter G. Deoxyribonucleic acid measurements on nodular lesions of the human thyroid. Lab Invest. 1968 Jun;18(6):675–680. [PubMed] [Google Scholar]
- Hirt B. Evidence for semiconservative replication of circular polyoma DNA. Proc Natl Acad Sci U S A. 1966 Apr;55(4):997–1004. doi: 10.1073/pnas.55.4.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
- KAPLAN A. S., BEN-PORAT T. MODE OF REPLICATION OF PSEUDORABIES VIRUS DNA. Virology. 1964 May;23:90–95. doi: 10.1016/s0042-6822(64)80011-8. [DOI] [PubMed] [Google Scholar]
- Kasamaki A., Ben-Porat T., Kaplan A. S. Polyoma virus-induced release of inhibition of cellular DNA synthesis caused by iododeoxyuridine. Nature. 1968 Feb 24;217(5130):756–758. doi: 10.1038/217756a0. [DOI] [PubMed] [Google Scholar]
- MASTER R. W. POSSIBLE SYNTHESIS OF POLYRIBONUCLEOTIDES OF KNOWN BASE-TRIPLET SEQUENCES. Nature. 1965 Apr 3;206:93–93. doi: 10.1038/206093b0. [DOI] [PubMed] [Google Scholar]
- Michel M. R., Hirt B., Weil R. Mouse cellular DNA enclosed in polyoma viral capsids (pseudovirions). Proc Natl Acad Sci U S A. 1967 Oct;58(4):1381–1388. doi: 10.1073/pnas.58.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris N. R., Cramer J. W. DNA synthesis by mammalian cells inhibited in culture by 5-lodo-2'-deoxyuridine. Mol Pharmacol. 1966 Jan;2(1):1–9. [PubMed] [Google Scholar]
- Pétursson G., Weil R. A study on the mechanism of polyoma-induced activation of the cellular DNA-synthesizing apparatus. Synchronization by FUdR of virus-induced DNA synthesis. Arch Gesamte Virusforsch. 1968;24(1):1–29. doi: 10.1007/BF01242898. [DOI] [PubMed] [Google Scholar]
- Radloff R., Bauer W., Vinograd J. A dye-buoyant-density method for the detection and isolation of closed circular duplex DNA: the closed circular DNA in HeLa cells. Proc Natl Acad Sci U S A. 1967 May;57(5):1514–1521. doi: 10.1073/pnas.57.5.1514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SIMON E. H. EFFECTS OF 5-BROMODEOXYURIDINE ON CELL DIVISION AND DNA REPLICATION IN HELA CELLS. Exp Cell Res. 1963;24:SUPPL9–SUPPL9:269. [PubMed] [Google Scholar]
- Türler H. Interactions of polyoma and mouse DNA's. II. Polyoma-induced mouse DNA replication and pseudovirion formation. J Virol. 1974 Feb;13(2):285–290. doi: 10.1128/jvi.13.2.285-290.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VOGT M., DULBECCO R. Steps in the neoplastic transformation of hamster embryo cells by polyoma virus. Proc Natl Acad Sci U S A. 1963 Feb 15;49:171–179. doi: 10.1073/pnas.49.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WINOCOUR E. Purification of polyoma virus. Virology. 1963 Feb;19:158–168. doi: 10.1016/0042-6822(63)90005-9. [DOI] [PubMed] [Google Scholar]
- Weil R., Michel M. R., Ruschmann G. K. Induction of cellular DNA synthesis by polyoma virus. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1468–1475. doi: 10.1073/pnas.53.6.1468. [DOI] [PMC free article] [PubMed] [Google Scholar]
