Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1974 Apr;13(4):818–827. doi: 10.1128/jvi.13.4.818-827.1974

Use of Bacteriophage φX174 Replicative from Progeny DNA as Templates for Transcription

Nicole Truffaut a,1, Robert L Sinsheimer a
PMCID: PMC355380  PMID: 4595299

Abstract

The synthesis of φX174-specific RNA has been studied in infected cells in which the thymine of the viral (+) strand of the parental RF*, of the complementary (−) strand of the parental RF, or of both strands of the progeny RF molecules has been replaced with 5-bromouracil (5 BU). By irradiation of such cells with UV light at a wavelength of 313 nm it was possible to affect, specifically, the 5 BU-labeled strands. When the progeny RF molecules contain thymine, irradiation has no effect upon the synthesis of viral-specific RNA, regardless of 5 BU substitution in either strand of parental RF. If, however, progeny RF is labeled with 5 BU, irradiation produces a major decrease of viral RNA synthesis. It is concluded that many progeny RF molecules can serve as templates for transcription at late times of infection. Irradiation, prior to RF replication, of cells in which, particularly, the complementary strand of RF contains 5 BU, appears to decrease the ability of the parental RF to replicate.

Full text

PDF
818

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunschede H., Bremer H. Protein synthesis in Escherichia coli after irradiation with ultraviolet light. J Mol Biol. 1969 Apr 14;41(1):25–38. doi: 10.1016/0022-2836(69)90123-5. [DOI] [PubMed] [Google Scholar]
  2. Burgess A. B., Denhardt D. T. Studies on phiX174 proteins. I. Phage-specific proteins synthesized after infection of Escherichia coli. J Mol Biol. 1969 Sep 28;44(3):377–386. doi: 10.1016/0022-2836(69)90367-2. [DOI] [PubMed] [Google Scholar]
  3. Datta B., Poddar R. K. Greater vulnerability of the infecting viral strand of replicative-form deoxyribonucleic acid of bacteriophage phi X174. J Virol. 1970 Nov;6(5):583–588. doi: 10.1128/jvi.6.5.583-588.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Denhardt D. T., Sinsheimer R. L. The process of infection with bacteriophage phi-X174. IV. Replication of the viral DNA in a synchronized infection. J Mol Biol. 1965 Jul;12(3):647–662. doi: 10.1016/s0022-2836(65)80319-9. [DOI] [PubMed] [Google Scholar]
  5. Dressler D., Wolfson J. The rolling circle for phi X DNA replication. 3. Synthesis of supercoiled duplex rings. Proc Natl Acad Sci U S A. 1970 Sep;67(1):456–463. doi: 10.1073/pnas.67.1.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gelfand D. H., Hayashi M. Electrophoretic characterization of phiX174-specific proteins. J Mol Biol. 1969 Sep 28;44(3):501–516. doi: 10.1016/0022-2836(69)90376-3. [DOI] [PubMed] [Google Scholar]
  7. Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
  8. Goddard J. P., Weiss J. J., Wheeler C. M. Studies on RNA synthesis primed by damaged templates. I. DNA templates damaged by deoxyribonuclease treatment and by gamma-radiation. Biochim Biophys Acta. 1970 Jan 21;199(1):126–138. doi: 10.1016/0005-2787(70)90701-x. [DOI] [PubMed] [Google Scholar]
  9. Godson G. N. Characterization and synthesis of phi X174 proteins in ultraviolet-irradiated and unirradiated cells. J Mol Biol. 1971 May 14;57(3):541–553. doi: 10.1016/0022-2836(71)90108-2. [DOI] [PubMed] [Google Scholar]
  10. HAYASHI M., HAYASHI M. N., SPIEGELMAN S. RESTRICTION OF IN VIVO GENETIC TRANSCRIPTION TO ONE OF THE COMPLEMENTARY STRANDS OF DNA. Proc Natl Acad Sci U S A. 1963 Oct;50:664–672. doi: 10.1073/pnas.50.4.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hagen U., Ullrich M., Petersen E. E., Werner E., Kröger H. Enzymatic RNA synthesis on irradiated DNA. Biochim Biophys Acta. 1970 Jan 21;199(1):115–125. doi: 10.1016/0005-2787(70)90700-8. [DOI] [PubMed] [Google Scholar]
  12. Hayashi M. N., Hayashi M. Participation of a DNA-RNA hybrid complex in in vivo genetic transcription. Proc Natl Acad Sci U S A. 1966 Mar;55(3):635–641. doi: 10.1073/pnas.55.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hayashi M. N., Hayashi M. The stability of native DNA-RNA complexes during in vivo phiX-174 transcription. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1107–1114. doi: 10.1073/pnas.61.3.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hudson B., Upholt W. B., Devinny J., Vinograd J. The use of an ethidium analogue in the dye-buoyant density procedure for the isolation of closed circular DNA: the variation of the superhelix density of mitochondrial DNA. Proc Natl Acad Sci U S A. 1969 Mar;62(3):813–820. doi: 10.1073/pnas.62.3.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Knippers R., Salivar W. O., Newbold J. E., Sinsheimer R. L. The process of infection with bacteriophage phiX174. XXVI. Transfer of the parental DNA of bacteriophage phiX174 into progeny bacteriophage particles. J Mol Biol. 1969 Feb 14;39(3):641–654. doi: 10.1016/0022-2836(69)90150-8. [DOI] [PubMed] [Google Scholar]
  16. Komano T., Sinsheimer R. L. Preparation and purification of phi X-RF component I. Biochim Biophys Acta. 1968 Jan 29;155(1):295–298. doi: 10.1016/0005-2787(68)90360-2. [DOI] [PubMed] [Google Scholar]
  17. Mayol R. F., Sinsheimer R. L. Process of infection with bacteriophage phiX174. XXXVI. Measurement of virus-specific proteins during a normal cycle of infection. J Virol. 1970 Sep;6(3):310–319. doi: 10.1128/jvi.6.3.310-319.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Merriam V., Dumas L. B., Sinsheimer R. L. Genetic Expression in Heterozygous Replicative Form Molecules of phiX174. J Virol. 1971 May;7(5):603–611. doi: 10.1128/jvi.7.5.603-611.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Merriam V., Funk F., Sinsheimer R. L. Genetic expression in whole cells of heterozygous replicative-form molecules of phi X174. Mutat Res. 1971 Jun;12(2):206–210. doi: 10.1016/0027-5107(71)90144-8. [DOI] [PubMed] [Google Scholar]
  20. Puga A., Tessman I. Mechanism of transcription of bacteriophage S13. I. Dependence of messengerRNA synthesis on amount and configuration of DNA. J Mol Biol. 1973 Mar 25;75(1):83–97. doi: 10.1016/0022-2836(73)90530-5. [DOI] [PubMed] [Google Scholar]
  21. SAUERBIER W. The influence of 5-bromodeoxyuridine substitution on UV sensitivity, host-cell reactivation, and photoreactivation in T1 and P22H5. Virology. 1961 Dec;15:465–472. doi: 10.1016/0042-6822(61)90113-1. [DOI] [PubMed] [Google Scholar]
  22. SINSHEIMER R. L., STARMAN B., NAGLER C., GUTHRIE S. The process of infection with bacteriophage phi-XI74. I. Evidence for a "replicative form". J Mol Biol. 1962 Mar;4:142–160. doi: 10.1016/s0022-2836(62)80047-3. [DOI] [PubMed] [Google Scholar]
  23. Shleser R., Puga A., Tessman E. S. Synthesis of replicative form deoxyribonucleic acid and messenger ribonucleic acid by gene IV mutants of bacteriophage S13. J Virol. 1969 Oct;4(4):394–399. doi: 10.1128/jvi.4.4.394-399.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shleser R., Tessman E. S., Casaday G. Protein synthesis by a mutant of phage S13 blocked in DNA synthesis. Virology. 1969 May;38(1):166–173. doi: 10.1016/0042-6822(69)90139-1. [DOI] [PubMed] [Google Scholar]
  25. Sinsheimer R. L. Bacteriophage phi-X174 and related viruses. Prog Nucleic Acid Res Mol Biol. 1968;8:115–169. [PubMed] [Google Scholar]
  26. Tessman E. S. Mutants of bacteriophage S13 blocked in infectious DNA synthesis. J Mol Biol. 1966 May;17(1):218–236. doi: 10.1016/s0022-2836(66)80104-3. [DOI] [PubMed] [Google Scholar]
  27. Yarus M. J., Sinsheimer R. L. The process of infection with bacteriophage phiX174. 8. Evidence for an essential bacterial "site". J Virol. 1967 Feb;1(1):135–144. doi: 10.1128/jvi.1.1.135-144.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES