Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1974 Jul;14(1):78–85. doi: 10.1128/jvi.14.1.78-85.1974

Isolation and Partial Characterization of Bacteriophage T5 Mutants Deficient in the Ability to Induce Deoxynucleoside Monophosphate Kinase 1

Susan M Berget 1,2, Huber R Warner 1,2, D James McCorquodale 1,2
PMCID: PMC355480  PMID: 4365325

Abstract

Two mutants of bacteriophage T5 deficient in the ability to induce wild-type levels of deoxynucleoside monophosphate kinase were isolated and partially characterized. Both mutations were demonstrated to be in a structural gene for the kinase. One of the mutants, designated dnk 10, induces no detectable levels of dCMP, dGMP, or dTMP kinase activity. Because the mutant can successfully infect nonpermissive cells, phage-induced deoxynucleoside monophosphate kinase appears to be an unessential function for phage production. DNA synthesis in dnk 10-infected cells, however, is reduced to 30% of that observed in wild-type-infected cells; phage production is reduced by a comparable amount. The dnk mutation has been mapped and located on the “C” region of the T5 genetic map, 6.3 map units from the C1 locus.

Full text

PDF
78

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARNER H. D., COHEN S. S. Virus-induced acquisition of metabolic function. IV. Thymidylate synthetase in thymine-requiring Escherichia coli infected by T2 and T5 bacteriophages. J Biol Chem. 1959 Nov;234:2987–2991. [PubMed] [Google Scholar]
  2. BESSMAN M. J. Deoxyribonucleotide kinases in normal and virus-infected Escherichia coli. J Biol Chem. 1959 Oct;234:2735–2740. [PubMed] [Google Scholar]
  3. BESSMAN M. J., HERRIOTT S. T., ORR M. J. THE ENZYMOLOGY OF VIRUS-INFECTED BACTERIA. VI. PURIFICATION AND PROPERTIES OF THE DEOXYNUCLEOTIDE KINASE INDUCED BY BACTERIOPHAGE T5. J Biol Chem. 1965 Jan;240:439–445. [PubMed] [Google Scholar]
  4. BOLLUM F. J. Thermal conversion of nonpriming deoxyribonucleic acid to primer. J Biol Chem. 1959 Oct;234:2733–2734. [PubMed] [Google Scholar]
  5. Chinnadurai G., McCorquodale D. J. Regulation of expression of late genes of bacteriophage T5. J Virol. 1974 Jan;13(1):85–93. doi: 10.1128/jvi.13.1.85-93.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Waard A., Paul A. V., Lehman I. R. The structural gene for deoxyribonucleic acid polymerase in bacteriophages T4 and T5. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1241–1248. doi: 10.1073/pnas.54.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doermann A. H., Boehner L. The identification of complex genotypes in bacteriophage T4. I. Methods. Genetics. 1970 Nov;66(3):417–428. doi: 10.1093/genetics/66.3.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duckworth D. H., Bessman M. J. The enzymology of virus-infected bacteria. X. A biochemical-genetic study of the deoxynucleotide kinase induced by wild type and amber mutants of phage T4. J Biol Chem. 1967 Jun 25;242(12):2877–2885. [PubMed] [Google Scholar]
  9. Hendrickson H. E., McCorquodale D. J. Genetic and physiological studies of bacteriophage T5. 3. Patterns of deoxyribonucleic acid synthesis induced by mutants of T5 and the identification of genes influencing the appearance of phage-induced dihydrofolate reductase and deoxyribonuclease. J Virol. 1972 Jun;9(6):981–989. doi: 10.1128/jvi.9.6.981-989.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hendrickson H. E., McCorquodale D. J. Genetic and physiological studies of bacteriophage t5 I. An expanded genetic map of t5. J Virol. 1971 May;7(5):612–618. doi: 10.1128/jvi.7.5.612-618.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hiraga S., Sugino Y. Nucleoside monophosphokinases of Escherichia coli infected and uninfected with an RNA phage. Biochim Biophys Acta. 1966 Feb 21;114(2):416–418. doi: 10.1016/0005-2787(66)90324-8. [DOI] [PubMed] [Google Scholar]
  12. LANNI Y. T. Invasion by bacteriophage T5. III. Stages revealed by changes in susceptibility of early complexes to abortive infection. Virology. 1961 Oct;15:127–135. doi: 10.1016/0042-6822(61)90229-x. [DOI] [PubMed] [Google Scholar]
  13. Lanni Y. Functions of two genes in the first-step-transfer DNA of bacteriophage T5. J Mol Biol. 1969 Aug 28;44(1):173–183. doi: 10.1016/0022-2836(69)90412-4. [DOI] [PubMed] [Google Scholar]
  14. MATHEWS C. K., COHEN S. S. Virus-induced acquisition of metabolic function. VI. Dihydrofolate reductase, a new phage-induced enzyme. J Biol Chem. 1963 Feb;238:853–855. [PubMed] [Google Scholar]
  15. Mathews C. K. Evidence that bacteriophage-induced dihydrofolate reductase in a viral gene product. J Biol Chem. 1967 Sep 25;242(18):4083–4086. [PubMed] [Google Scholar]
  16. Orr C. W., Herriott S. T., Bessman M. J. The enzymology of virus-infected bacteria. VII. A new deoxyribonucleic acid polymerase induced by bacteriophage T5. J Biol Chem. 1965 Dec;240(12):4652–4658. [PubMed] [Google Scholar]
  17. Parma D. H., Snyder M. The genetic constitution of tandem duplications on the rII of bacteriophage T4D. Genetics. 1973 Feb;73(2):161–183. doi: 10.1093/genetics/73.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. RANDERATH K., RANDERATH E. ION-EXCHANGE CHROMATOGRAPHY OF NUCLEOTIDES ON POLY-(ETHYLENEIMINE)-CELLULOSE THIN LAYERS. J Chromatogr. 1964 Oct;16:111–125. doi: 10.1016/s0021-9673(01)82445-6. [DOI] [PubMed] [Google Scholar]
  19. Steuart C. D., Anand S. R., Bessman M. J. Studies on the synthesis of deoxyribonucleic acid. I. Further purification and properties of the deoxyribonucleic acid polymerase induced by infection of Escherichia coli with bacteriophage T5. J Biol Chem. 1968 Oct 25;243(20):5308–5318. [PubMed] [Google Scholar]
  20. Tessman I. Mutagenic treatment of double- and single-stranded DNA phages T4 ans S13 with hydroxylamine. Virology. 1968 Jun;35(2):330–333. doi: 10.1016/0042-6822(68)90275-4. [DOI] [PubMed] [Google Scholar]
  21. WIBERG J. S., DIRKSEN M. L., EPSTEIN R. H., LURIA S. E., BUCHANAN J. M. Early enzyme synthesis and its control in E. coli infected with some amber mutants of bacteriophage T4. Proc Natl Acad Sci U S A. 1962 Feb;48:293–302. doi: 10.1073/pnas.48.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Warner H. R., Lewis N. The synthesis of deoxycytidylate deaminase and dihydrofolate reductase and its control in Escherichia coli infected with bacteriophage T4 and T-4 amber mutants. Virology. 1966 May;29(1):172–175. doi: 10.1016/0042-6822(66)90208-x. [DOI] [PubMed] [Google Scholar]
  23. Warner H. R., Snustad D. P., Koerner J. F., Childs J. D. Identification and genetic characterization of mutants of bacteriophage T4 defective in the ability to induce exonuclease A. J Virol. 1972 Mar;9(3):399–407. doi: 10.1128/jvi.9.3.399-407.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wovcha M. G., Tomich P. K., Chiu C. S., Greenberg G. R. Direct participation of dCMP hydroxymethylase in synthesis of bacteriophage T4 DNA. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2196–2200. doi: 10.1073/pnas.70.8.2196. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES