Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1974 Aug;14(2):384–391. doi: 10.1128/jvi.14.2.384-391.1974

DNA of a Human Hepatitis B Virus Candidate

William S Robinson 1, David A Clayton 1, Richard L Greenman 1
PMCID: PMC355524  PMID: 4847328

Abstract

Particles containing DNA polymerase (Dane particles) were purified from the plasma of chronic carriers of hepatitis B antigen. After a DNA polymerase reaction with purified Dane particle preparations treated with Nonidet P-40 detergent, Dane particle core structures containing radioactive DNA product were isolated by sedimentation in a sucrose density gradient. The radioactive DNA was extracted with sodium dodecyl sulfate and isolated by band sedimentation in a preformed CsCl gradient. Examination of the radioactive DNA band by electron microscopy revealed exclusively circular double-stranded DNA molecules approximately 0.78 μm in length. Identical circular molecules were observed when DNA was isolated by a similar procedure from particles that had not undergone a DNA polymerase reaction. The molecules were completely degraded by DNase 1. When Dane particle core structures were treated with DNase 1 before DNA extraction, only 0.78-μm circular DNA molecules were detected. Without DNase treatment of core structures, linear molecules with lengths between 0.5 and 12 μm, in addition to the 0.78-μm circles were found. These results suggest that the 0.78-μm circular molecules were in a protected position within Dane particle cores and the linear molecules were not within core structures. Length measurements on 225 circular molecules revealed a mean length of 0.78 ± 0.09 μm which would correspond to a molecular weight of around 1.6 × 106. The circular molecules probably serve as primer-template for the DNA polymerase reaction carried out by Dane particle cores. Thermal denaturation and buoyant density measurements on the Dane particle DNA polymerase reaction product revealed a guanosine plus cytosine content of 48 to 49%.

Full text

PDF
384

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ATCHISON R. W., CASTO B. C., HAMMON W. M. ADENOVIRUS-ASSOCIATED DEFECTIVE VIRUS PARTICLES. Science. 1965 Aug 13;149(3685):754–756. doi: 10.1126/science.149.3685.754. [DOI] [PubMed] [Google Scholar]
  2. Almeida J. D. Electron microscopic observations and speculations on Australia antigen. Postgrad Med J. 1971 Jul;47(549):484–487. doi: 10.1136/pgmj.47.549.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bayer M. E., Blumberg B. S., Werner B. Particles associated with Australia antigen in the sera of patients with leukaemia, Down's Syndrome and hepatitis. Nature. 1968 Jun 15;218(5146):1057–1059. doi: 10.1038/2181057a0. [DOI] [PubMed] [Google Scholar]
  4. CRAWFORD L. V., BLACK P. H. THE NUCLEIC ACID OF SIMIAN VIRUS 40. Virology. 1964 Nov;24:388–392. doi: 10.1016/0042-6822(64)90176-x. [DOI] [PubMed] [Google Scholar]
  5. Clayton D. A., Davis R. W., Vinograd J. Homology and structural relationships between the dimeric and monomeric circular forms of mitochondrial DNA from human leukemic leukocytes. J Mol Biol. 1970 Jan 28;47(2):137–153. doi: 10.1016/0022-2836(70)90335-9. [DOI] [PubMed] [Google Scholar]
  6. Dane D. S., Cameron C. H., Briggs M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet. 1970 Apr 4;1(7649):695–698. doi: 10.1016/s0140-6736(70)90926-8. [DOI] [PubMed] [Google Scholar]
  7. Espejo R. T., Canelo E. S., Sinsheimer R. L. DNA of bacteriophage PM2: a closed circular double-stranded molecule. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1164–1168. doi: 10.1073/pnas.63.4.1164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hoggan M. D., Blacklow N. R., Rowe W. P. Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1467–1474. doi: 10.1073/pnas.55.6.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hudson B., Clayton D. A., Vinograd J. Complex mitochondrial DNA. Cold Spring Harb Symp Quant Biol. 1968;33:435–442. doi: 10.1101/sqb.1968.033.01.050. [DOI] [PubMed] [Google Scholar]
  10. Kamm R. C., Smith A. G. Nucleic acid concentrations in normal human plasma. Clin Chem. 1972 Jun;18(6):519–522. [PubMed] [Google Scholar]
  11. Kaplan P. M., Greenman R. L., Gerin J. L., Purcell R. H., Robinson W. S. DNA polymerase associated with human hepatitis B antigen. J Virol. 1973 Nov;12(5):995–1005. doi: 10.1128/jvi.12.5.995-1005.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  13. Robinson W. S., Greenman R. L. DNA polymerase in the core of the human hepatitis B virus candidate. J Virol. 1974 Jun;13(6):1231–1236. doi: 10.1128/jvi.13.6.1231-1236.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Robinson W. S., Robinson H. L. DNA polymerase in defective Rous sarcoma virus. Virology. 1971 May;44(2):457–462. doi: 10.1016/0042-6822(71)90278-9. [DOI] [PubMed] [Google Scholar]
  15. SUEOKA N., MARMUR J., DOTY P., 2nd Dependence of the density of deoxyribonucleic acids on guanine-cytosine content. Nature. 1959 May 23;183(4673):1429–1431. doi: 10.1038/1831429a0. [DOI] [PubMed] [Google Scholar]
  16. Tai H. T., Smith C. A., Sharp P. A., Vinograd J. Sequence heterogeneity in closed simian virus 40 deoxyribonucleic acid. J Virol. 1972 Feb;9(2):317–325. doi: 10.1128/jvi.9.2.317-325.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vogt V. M. Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae. Eur J Biochem. 1973 Feb 15;33(1):192–200. doi: 10.1111/j.1432-1033.1973.tb02669.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES