Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1974 Nov;14(5):1152–1168. doi: 10.1128/jvi.14.5.1152-1168.1974

Intermediates of Bacteriophage MS2 Assembly In Vivo

Philip H Bonner a,1
PMCID: PMC355632  PMID: 4610179

Abstract

The in vivo process of virion assembly was studied in rifampin-treated, MS2-infected Escherichia coli during late times of infection—after 18 min postinfection. Differential sucrose gradient sedimentation of infected-cell lysates taken at various times after radioactive labeling indicated a definite temporal order of appearance of phage-specific protein in assembly-related structures. Labeled MS2 protein appears first as a low-molecular-weight peak at the tops of gradients, then as a peak at 40S and as a large number of almost unseparable structures between 40 and 80S, and finally as 80S mature phage particles. During the chase of a short labeling period, radioactive phage protein was found to disappear from gradients in the same temporal order as it appeared; the soluble peak disappears first, followed by the 40 to 70S region. The chased label appears quantitatively in the 80S phage peak. Labeled phage RNA was found to appear first in the 40S peak, then in the structures between 40 and 70S, and finally in 80S phage particles. The order of disappearance of labeled phage RNA during a chase is the same as its appearance. Resedimentation of the 40 to 70S region indicated the presence of distinct structures at 60 and 70S and many indistinct ones between 40 and 60S. The smaller intermediates exhibit separable maturation protein-rich and coat protein-rich segments, indicating nonrandom binding of the two proteins during the initial steps of assembly. Larger, discrete intermediates appear at 60 and 70S. Treatment of the various structures with pancreatic RNase results in destruction of those from 40 through 60S; treatment of the 70S structure results in the conversion of some of it to a 45S peak, presumably the complete capsid. A small fraction of the 80S phage peak is also sensitive to RNase, resulting in a similar 45S peak. Pulse-chase experiments indicate that structures from 40 through 60S as well as the RNase-sensitive 70S structure are assembly intermediates, but that the RNase-insensitive 70S and the RNase-sensitive 80S structures are not.

Full text

PDF
1152

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cramer J. H., Sinsheimer R. L. Replication of bacteriophage MS2. X. Phage-specific ribonucleoprotein particles found in MS2-infected Escherichia coli. J Mol Biol. 1971 Nov 28;62(1):189–214. doi: 10.1016/0022-2836(71)90139-2. [DOI] [PubMed] [Google Scholar]
  2. Fromageot H. P., Zinder N. D. Growth of bacteriophage f2 in E. coli treated with rifampicin. Proc Natl Acad Sci U S A. 1968 Sep;61(1):184–191. doi: 10.1073/pnas.61.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Godson G. N., Sinsheimer R. L. The replication of bacteriophage MS2. VI. Interaction between bacteriophage RNA and cellular components in MS2-infected Escherichia coli. J Mol Biol. 1967 Feb 14;23(3):495–521. doi: 10.1016/s0022-2836(67)80121-9. [DOI] [PubMed] [Google Scholar]
  4. Godson G. N. Site of synthesis of viral ribonucleic acid and phage assembly in MS2-infected Escherichia coli. J Mol Biol. 1968 May 28;34(1):149–163. doi: 10.1016/0022-2836(68)90241-6. [DOI] [PubMed] [Google Scholar]
  5. Haywood A. M., Cramer J. H., Shoemaker N. L. Host-virus interaction in ribonucleic acid bacteriophage-infected Escherichia coli. I. Location of "late" MS2-specific ribonucleic acid synthesis. J Virol. 1969 Oct;4(4):364–371. doi: 10.1128/jvi.4.4.364-371.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hohn T., Hohn B. Structure and assembly of simple RNA bacteriophages. Adv Virus Res. 1970;16:43–98. doi: 10.1016/s0065-3527(08)60021-4. [DOI] [PubMed] [Google Scholar]
  7. Hohn T. Selfassembly of defective particles of the bacteriophage fr. Eur J Biochem. 1967 Sep;2(2):152–155. doi: 10.1111/j.1432-1033.1967.tb00119.x. [DOI] [PubMed] [Google Scholar]
  8. Hung P. P., Overby L. R. The reconstitution of infective bacteriophage Q beta. Biochemistry. 1969 Mar;8(3):820–828. doi: 10.1021/bi00831a009. [DOI] [PubMed] [Google Scholar]
  9. Kaerner H. C. Sequential steps in the in vivo assembly of the RNA bacteriophage fr. J Mol Biol. 1970 Nov 14;53(3):515–529. doi: 10.1016/0022-2836(70)90081-1. [DOI] [PubMed] [Google Scholar]
  10. Kiehn E. D., Holland J. J. Membrane and nonmembrane proteins of mammalian cells. Synthesis, turnover, and size distribution. Biochemistry. 1970 Apr 14;9(8):1716–1728. doi: 10.1021/bi00810a010. [DOI] [PubMed] [Google Scholar]
  11. Maizel J. V., Jr Acrylamide-gel electrophorograms by mechanical fractionation: radioactive adenovirus proteins. Science. 1966 Feb 25;151(3713):988–990. doi: 10.1126/science.151.3713.988. [DOI] [PubMed] [Google Scholar]
  12. Nathans D., Oeschger M. P., Polmar S. K., Eggen K. Regulation of protein synthesis directed by coliphage MS2 RNA. I. Phage protein and RNA synthesis in cells infected with suppressible mutants. J Mol Biol. 1969 Jan;39(2):279–292. doi: 10.1016/0022-2836(69)90317-9. [DOI] [PubMed] [Google Scholar]
  13. Reid P., Speyer J. Rifampicin inhibition of ribonucleic acid and protein synthesis in normal and ethylenediaminetetraacetic acid-treated Escherichia coli. J Bacteriol. 1970 Oct;104(1):376–389. doi: 10.1128/jb.104.1.376-389.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Richelson E., Nathans D. Association of bacteriophage proteins and RNA in E. coli infected with MS2. Biochem Biophys Res Commun. 1967 Dec 29;29(6):842–849. doi: 10.1016/0006-291x(67)90296-3. [DOI] [PubMed] [Google Scholar]
  15. Roberts J. W., Steitz J. E. The reconstitution of infective bacteriophage R17. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1416–1421. doi: 10.1073/pnas.58.4.1416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rohrmann G. F., Krueger R. G. Physical, biochemical, and immunological properties of coliphage MS-2 particles. J Virol. 1970 Sep;6(3):269–279. doi: 10.1128/jvi.6.3.269-279.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rohrmann G. F., Krueger R. G. The self-assembly of RNA free protein subunits from bacteriophage MS-2. Biochem Biophys Res Commun. 1970 Feb 6;38(3):406–413. doi: 10.1016/0006-291x(70)90728-x. [DOI] [PubMed] [Google Scholar]
  18. Samuelson G., Kaesberg P. An artificial top component of R17 bacteriophage. J Mol Biol. 1970 Jan 14;47(1):87–91. doi: 10.1016/0022-2836(70)90403-1. [DOI] [PubMed] [Google Scholar]
  19. Sippel A., Hartmann G. Mode of action of rafamycin on the RNA polymerase reaction. Biochim Biophys Acta. 1968 Mar 18;157(1):218–219. doi: 10.1016/0005-2787(68)90286-4. [DOI] [PubMed] [Google Scholar]
  20. Stavis R. L., August J. T. The biochemistry of RNA bacteriophage replication. Annu Rev Biochem. 1970;39:527–560. doi: 10.1146/annurev.bi.39.070170.002523. [DOI] [PubMed] [Google Scholar]
  21. Steitz J. A. A slowly sedimenting, infective form of bacteriophage R17. J Mol Biol. 1968 May 14;33(3):947–951. doi: 10.1016/0022-2836(68)90330-6. [DOI] [PubMed] [Google Scholar]
  22. Sugiyama T., Hebert R. R., Hartman K. A. Ribonucleoprotein complexes formed between bacteriophage MS2 RNA and MS2 protein in vitro. J Mol Biol. 1967 May 14;25(3):455–463. doi: 10.1016/0022-2836(67)90198-2. [DOI] [PubMed] [Google Scholar]
  23. Viñuela E., Algranati I. D., Ochoa S. Synthesis of virus-specific proteins in Escherichia coli infected with the RNA bacteriophage MS2. Eur J Biochem. 1967 Mar;1(1):3–11. doi: 10.1007/978-3-662-25813-2_2. [DOI] [PubMed] [Google Scholar]
  24. Wehrli W., Staehelin M. The rifamycins--relation of chemical structure and action on RNA polymerase. Biochim Biophys Acta. 1969 May 20;182(1):24–29. doi: 10.1016/0005-2787(69)90516-4. [DOI] [PubMed] [Google Scholar]
  25. Zelazo P. O., Haschemeyer R. H. Spherical protein shell formation from an 11S subunit of bacteriophage f2. Science. 1970 Jun 19;168(3938):1461–1462. doi: 10.1126/science.168.3938.1461. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES