Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1975 Dec;16(6):1380–1390. doi: 10.1128/jvi.16.6.1380-1390.1975

F-Factor-mediated restriction of bacteriophage T7: synthesis of RNA and protein in T7-infected Escherichia coli F- and F+ cells.

P A Whitaker, Y Yamada, D Nakada
PMCID: PMC355746  PMID: 1104891

Abstract

Bacteriophage T7 is unable to productively infect Escherichia coli strains carrying the sex factor F. T7 phage development, in terms of RNA and protein synthesis, was compared in T7-infected isogenic F- and F+ strains of E. coli. Slightly less T7 early mRNA and early protein were synthesized in F+ cells. In addition to the defect in T7 late protein production in F+ cells reported by others, significantly less T7 late mRNA was synthesized, about one-half of that produced in T7-infected F- cells. Moreover, host RNA synthesis was not completely inhibited. The protein-synthesizing ability of T7-infected F+ cells decayed much faster than that of F- cells both in vivo and in vitro. This faster decay appears to explain the failure of F+ cells to produce T7 late protein in vivo, even in the presence of a considerable amount of translatable T7 late mRNA. Therefore, it may not be necessary to postulate the involvement of specific translational discrimination against T7 late mRNA, although it appears that F-factor-mediated restriction of T7 involves changes in transcription as well as translation.

Full text

PDF
1380

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blumberg D. D., Malamy M. H. Evidence for the presence of nontranslated T7 late mRNA in infected F'(PIF+) episome-containing cells. J Virol. 1974 Feb;13(2):378–385. doi: 10.1128/jvi.13.2.378-385.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Britton J. R., Haselkorn R. Permeability lesions in male Escherichia coli infected with bacteriophage T7. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2222–2226. doi: 10.1073/pnas.72.6.2222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burgess R. R. A new method for the large scale purification of Escherichia coli deoxyribonucleic acid-dependent ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6160–6167. [PubMed] [Google Scholar]
  4. Chamberlin M., McGrath J., Waskell L. New RNA polymerase from Escherichia coli infected with bacteriophage T7. Nature. 1970 Oct 17;228(5268):227–231. doi: 10.1038/228227a0. [DOI] [PubMed] [Google Scholar]
  5. Cooper T. G., Whitney P., Magasanik B. Reaction of lac-specific ribonucleic acid from Escherichia coli with lac deoxyribonucleic acid. J Biol Chem. 1974 Oct 25;249(20):6548–6555. [PubMed] [Google Scholar]
  6. Hagen F., Young E. T. Regulation of synthesis of bacteriophage T7 lysozyme mRNA. Virology. 1973 Sep;55(1):231–241. doi: 10.1016/s0042-6822(73)81026-8. [DOI] [PubMed] [Google Scholar]
  7. Hesselbach B. A., Yamada Y., Nakada D. Isolation of an inhibitor protein of E. coli RNA polymerase from T7 phage infected cell. Nature. 1974 Nov 1;252(5478):71–74. doi: 10.1038/252071b0. [DOI] [PubMed] [Google Scholar]
  8. Hirota Y. THE EFFECT OF ACRIDINE DYES ON MATING TYPE FACTORS IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1960 Jan;46(1):57–64. doi: 10.1073/pnas.46.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Morrison T. G., Malamy M. H. T7 translational control mechanisms and their inhibiton by F factors. Nat New Biol. 1971 May 12;231(19):37–41. doi: 10.1038/newbio231037a0. [DOI] [PubMed] [Google Scholar]
  11. Summers W. C. The process of infection with coliphage T7. I. Characterization of T7 RNA by polyacrylamide gel electrophoretic analysis. Virology. 1969 Oct;39(2):175–181. doi: 10.1016/0042-6822(69)90037-3. [DOI] [PubMed] [Google Scholar]
  12. Yamada Y., Whitaker P. A., Nakada D. Early to late switch in bacteriophage T7 development: functional decay of T7 early messenger RNA. J Mol Biol. 1974 Oct 25;89(2):293–303. doi: 10.1016/0022-2836(74)90520-8. [DOI] [PubMed] [Google Scholar]
  13. Yamada Y., Whitaker P. A., Nakada D. Functional instability of T7 early mRNA. Nature. 1974 Mar 22;248(446):335–338. doi: 10.1038/248335a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES