Abstract
The histidine analogue L-histidinol, reported by Vaughan and Hansen (1973) to establish a potent, readily reversible inhibition of eukaryotic protein synthesis in vivo, was used to investigate the regulation of macromolecular synthesis in reovirus-infected L-929 cells. The addition of L-histidinol to normal L cells led to a total inhibition of protein synthesis. The inhibition appeared to be a consequence neither of isotope dilution resulting from elevated endogenous amino acids nor of an inability of treated cells to accumulate exogenous amino acids. Addition of L-histidine to histidinol-arrested cells resulted in a complete recovery of protein synthesis. Similarly, protein synthesis in reovirus-infected L cells examined 17 h postinfection (31 C) was totally inhibited by histidinol treatment and was readily reversed by the addition of histidine. Reovirus-infected cells treated with histidinol had an essentially unaltered capacity to synthesize reovirus single-stranded RNA relative to unperturbed cultures but a diminishing ability to maintain genome RNA synthesis. Addition of L-histidine to arrested cultures led to a complete recovery of genome RNA synthesis. The L-histidinol-mediated arrest of protein synthesis was both very effective and easily reversed, suggesting the general applicability of this novel inhibitor to investigations of regulation of macromolecular synthesis in both normal and virus-infected eukaryotic cells.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acs G., Klett H., Schonberg M., Christman J., Levin D. H., Silverstein S. C. Mechanism of reovirus double-stranded ribonucleic acid synthesis in vivo and in vitro. J Virol. 1971 Nov;8(5):684–689. doi: 10.1128/jvi.8.5.684-689.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Both G. W., Lavi S., Shatkin A. J. Synthesis of all the gene products of the reovirus genome in vivo and in vitro. Cell. 1975 Feb;4(2):173–180. doi: 10.1016/0092-8674(75)90124-5. [DOI] [PubMed] [Google Scholar]
- Hansen B. S., Vaughan M. H., Wang L. Reversible inhibition by histidinol of protein synthesis in human cells at the activation of histidine. J Biol Chem. 1972 Jun 25;247(12):3854–3857. [PubMed] [Google Scholar]
- Kudo H., Graham A. F. Selective inhibition of reovirus induced RNA in L cells. Biochem Biophys Res Commun. 1966 Jul 20;24(2):150–155. doi: 10.1016/0006-291x(66)90711-x. [DOI] [PubMed] [Google Scholar]
- Lewin B. Units of transcription and translation: the relationship between heterogeneous nuclear RNA and messenger RNA. Cell. 1975 Jan;4(1):11–20. doi: 10.1016/0092-8674(75)90128-2. [DOI] [PubMed] [Google Scholar]
- Lucas-Lenard J. Cleavage of mengovirus polyproteins in vivo. J Virol. 1974 Aug;14(2):261–269. doi: 10.1128/jvi.14.2.261-269.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perry R. P., La Torre J., Kelley D. E., Greenberg J. R. On the lability of poly(A) sequences during extraction of messenger RNA from polyribosomes. Biochim Biophys Acta. 1972 Mar 14;262(2):220–226. doi: 10.1016/0005-2787(72)90236-5. [DOI] [PubMed] [Google Scholar]
- Pett D. M., Vanaman T. C., Joklik W. K. Studies on the amino and carboxyl terminal amino acid sequences of reovirus capsid polypeptides. Virology. 1973 Mar;52(1):174–186. doi: 10.1016/0042-6822(73)90407-8. [DOI] [PubMed] [Google Scholar]
- Sakuma S., Watanabe Y. Incorporation of in vitro synthesized reovirus double-stranded ribonucleic acid into virus corelike particles. J Virol. 1972 Nov;10(5):943–950. doi: 10.1128/jvi.10.5.943-950.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaughan M. H., Hansen B. S. Control of initiation of protein synthesis in human cells. Evidence for a role of uncharged transfer ribonucleic acid. J Biol Chem. 1973 Oct 25;248(20):7087–7096. [PubMed] [Google Scholar]
- Warrington R. C., Hayward C., Kapuler A. M. Conformational studies of reovirus single-stranded RNAs synethesized in vitro. Biochim Biophys Acta. 1973 Dec 7;331(2):231–242. doi: 10.1016/0005-2787(73)90436-x. [DOI] [PubMed] [Google Scholar]
- Watanabe Y., Kudo H., Graham A. F. Selective inhibition of reovirus ribonucleic acid synthesis by cycloheximide. J Virol. 1967 Feb;1(1):36–44. doi: 10.1128/jvi.1.1.36-44.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe Y., Millward S., Graham A. F. Regulation of transcription of the Reovirus genome. J Mol Biol. 1968 Aug 28;36(1):107–123. doi: 10.1016/0022-2836(68)90223-4. [DOI] [PubMed] [Google Scholar]
- Zweerink H. J., Ito Y., Matsuhisa T. Synthesis of reovirus double-stranded RNA within virionlike particles. Virology. 1972 Nov;50(2):349–358. doi: 10.1016/0042-6822(72)90386-8. [DOI] [PubMed] [Google Scholar]
- Zweerink H. J., Joklik W. K. Studies on the intracellular synthesis of reovirus-specified proteins. Virology. 1970 Jul;41(3):501–518. doi: 10.1016/0042-6822(70)90171-6. [DOI] [PubMed] [Google Scholar]
- Zweerink H. J. Multiple forms of SS leads to DS RNA polymerase activity in reovirus-infected cells. Nature. 1974 Feb 1;247(5439):313–315. doi: 10.1038/247313a0. [DOI] [PubMed] [Google Scholar]
