Abstract
P16 is a virion protein and, as such, is incorporated into the phage head as a step in morphogenesis. The role of P16 in assembly is not essential since particles are formed without this protein which appear normal by electron microscopy. P16 is essential when the particle infects a cell in the following cycle of infection. In the absence of functional P16, the infection does not appear to proceed beyond release of phage DNA from the capsid. No known genes are expressed, no DNA is transcribed, and the host cell survives the infection, continuing to grow and divide normally. The P16 function is required only during infection for the expression of phage functions. Induction in the absence of P16 proceeds with the expression of early and late genes and results in particle formation. P16 must be incorporated during morphogenesis into progeny particles after both infection and induction for the progeny to be infectious. The P16 function is necessary for transduction as well as for infection. Its activity is independent of new protein synthesis and it is not under immunity control. P16 can act in trans, but appears to act preferentially on the phage or phage DNA with which it is packaged. The data from complementation studies are compatible with P16 release from the capsid with the phage DNA. In the absence of P16 the infection is blocked, but the phage genome is not degraded. The various roles which have been ruled out for P16 are: (i) an early regulatory function, (ii) an enzymatic activity necessary for phage production, (iii) protection of phage DNA from host degradation enzymes, (iv) any generalized alteration of the host cell, (v) binding parental DNA to the replication complex, and (vi) any direct involvement in the replication of P22 DNA. P16 can be responsible for: (i) complete release of the DNA and disengagement from the capsid, (ii) bringing the released DNA to some necessary cell site or compartment such as the cytoplasm, (iii) removal of other virion proteins from the injected DNA, and (iv) alterations of the structure of the injected DNA.
Full text
PDF![1547](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c015/355763/90838d972c88/jvirol00240-0207.png)
![1548](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c015/355763/36634b845618/jvirol00240-0208.png)
![1549](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c015/355763/494925d64e65/jvirol00240-0209.png)
![1550](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c015/355763/cd961bf68587/jvirol00240-0210.png)
![1551](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c015/355763/09643c64968a/jvirol00240-0211.png)
![1552](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c015/355763/5b6693fa6d2a/jvirol00240-0212.png)
![1553](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c015/355763/dbebc27de412/jvirol00240-0213.png)
![1554](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c015/355763/f5805ffa5755/jvirol00240-0214.png)
![1555](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c015/355763/594956cf1445/jvirol00240-0215.png)
![1556](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c015/355763/b521aebe3fd5/jvirol00240-0216.png)
![1557](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c015/355763/02141934f61e/jvirol00240-0217.png)
![1558](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c015/355763/d275606d8f77/jvirol00240-0218.png)
![1559](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c015/355763/79fb9edac739/jvirol00240-0219.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alberts B. M., Frey L. T4 bacteriophage gene 32: a structural protein in the replication and recombination of DNA. Nature. 1970 Sep 26;227(5265):1313–1318. doi: 10.1038/2271313a0. [DOI] [PubMed] [Google Scholar]
- Alberts B. M. Function of gene 32-protein, a new protein essential for the genetic recombination and replication of T4 bacteriophage DNA. Fed Proc. 1970 May-Jun;29(3):1154–1163. [PubMed] [Google Scholar]
- Bezdek M., Amati P. Evidence for two immunity regulator systems in temperature bacteriophages P22 and L. Virology. 1968 Dec;36(4):701–703. doi: 10.1016/0042-6822(68)90208-0. [DOI] [PubMed] [Google Scholar]
- Bezdek M., Amati P. Properties of P22 and A related Salmonella typhimurium phage. I. General features and host specificity. Virology. 1967 Feb;31(2):272–278. doi: 10.1016/0042-6822(67)90171-7. [DOI] [PubMed] [Google Scholar]
- Bezdek M., Soska J., Amati P. Properties of P22 and a related Salmonella typhimurium phage. 3. Studies on clear-plaque mutants of phage L. Virology. 1970 Mar;40(3):505–513. doi: 10.1016/0042-6822(70)90193-5. [DOI] [PubMed] [Google Scholar]
- Bezdek M., Soska J. Evidence for an early regulatory function in Phage P22. Mol Gen Genet. 1970;108(3):243–248. doi: 10.1007/BF00283354. [DOI] [PubMed] [Google Scholar]
- Botstein D., Levine M. Intermediates in the synthesis of phage P22 DNA. Cold Spring Harb Symp Quant Biol. 1968;33:659–667. doi: 10.1101/sqb.1968.033.01.075. [DOI] [PubMed] [Google Scholar]
- Botstein D., Waddell C. H., King J. Mechanism of head assembly and DNA encapsulation in Salmonella phage p22. I. Genes, proteins, structures and DNA maturation. J Mol Biol. 1973 Nov 15;80(4):669–695. doi: 10.1016/0022-2836(73)90204-0. [DOI] [PubMed] [Google Scholar]
- Ebel-Tsipis J., Botstein D., Fox M. S. Generalized transduction by phage P22 in Salmonella typhimurium. I. Molecular origin of transducing DNA. J Mol Biol. 1972 Nov 14;71(2):433–448. doi: 10.1016/0022-2836(72)90361-0. [DOI] [PubMed] [Google Scholar]
- Ebel-Tsipis J., Fox M. S., Botstein D. Generalized transduction by bacteriophage P22 in Salmonella typhimurium. II. Mechanism of integration of transducing DNA. J Mol Biol. 1972 Nov 14;71(2):449–469. doi: 10.1016/0022-2836(72)90362-2. [DOI] [PubMed] [Google Scholar]
- Hoffman B., Levine M. Bacteriophage P22 virion protein which performs an essential early function. I. Analysis of 16-ts mutants. J Virol. 1975 Dec;16(6):1536–1546. doi: 10.1128/jvi.16.6.1536-1546.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huberman J. A., Kornberg A., Alberts B. M. Stimulation of T4 bacteriophage DNA polymerase by the protein product of T4 gene 32. J Mol Biol. 1971 Nov 28;62(1):39–52. doi: 10.1016/0022-2836(71)90129-x. [DOI] [PubMed] [Google Scholar]
- Israel V., Woodworth-Gutai M., Levine M. Inhibitory effect of bacteriophage P22 infection on host cell deoxyribonuclease activity. J Virol. 1972 May;9(5):752–757. doi: 10.1128/jvi.9.5.752-757.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King J., Lenk E. V., Botstein D. Mechanism of head assembly and DNA encapsulation in Salmonella phage P22. II. Morphogenetic pathway. J Mol Biol. 1973 Nov 15;80(4):697–731. doi: 10.1016/0022-2836(73)90205-2. [DOI] [PubMed] [Google Scholar]
- LANNI Y. T. Invasion by bacteriophage T5. II. Dissociation of calcium-independent and calcium-dependent processes. Virology. 1960 Apr;10:514–529. doi: 10.1016/0042-6822(60)90133-1. [DOI] [PubMed] [Google Scholar]
- LANNI Y. T., MCCORQUODALE D. J., WILSON C. M. MOLECULAR ASPECTS OF DNA TRANSFER FROM PHAGE T5 TO HOST CELLS. II. ORIGIN OF FIRST-STEP-TRANSFER DNA FRAGMENTS. J Mol Biol. 1964 Oct;10:19–27. doi: 10.1016/s0022-2836(64)80024-3. [DOI] [PubMed] [Google Scholar]
- LEVINE M. Mutations in the temperate phage P22 and lysogeny in Salmonella. Virology. 1957 Feb;3(1):22–41. doi: 10.1016/0042-6822(57)90021-1. [DOI] [PubMed] [Google Scholar]
- Lanni Y. T. DNA transfer from phage T5 to host cells: dependence on intercurrent protein synthesis. Proc Natl Acad Sci U S A. 1965 May;53(5):969–973. doi: 10.1073/pnas.53.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lanni Y. Functions of two genes in the first-step-transfer DNA of bacteriophage T5. J Mol Biol. 1969 Aug 28;44(1):173–183. doi: 10.1016/0022-2836(69)90412-4. [DOI] [PubMed] [Google Scholar]
- Levine M., Chakravorty M., Bronson M. J. Control of the replication complex of bacteriophage P22. J Virol. 1970 Oct;6(4):400–405. doi: 10.1128/jvi.6.4.400-405.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine M. Replication and lysogeny with phage P22 in Salmonella typhimurium. Curr Top Microbiol Immunol. 1972;58:135–156. doi: 10.1007/978-3-642-65357-5_4. [DOI] [PubMed] [Google Scholar]
- Levine M., Schott C. Mutations of phage P22 affecting phage DNA synthesis and lysogenization. J Mol Biol. 1971 Nov 28;62(1):53–64. doi: 10.1016/0022-2836(71)90130-6. [DOI] [PubMed] [Google Scholar]
- MCCORQUODALE D. J., LANNI Y. T. MOLECULAR ASPECTS OF DNA TRANSFER FROM PHAGE T5 TO HOST CELLS. I. CHARACTERIZATION OF FIRST-STEP-TRANSFER MATERIAL. J Mol Biol. 1964 Oct;10:10–18. doi: 10.1016/s0022-2836(64)80023-1. [DOI] [PubMed] [Google Scholar]
- Miyake T, Demerec M. Proline Mutants of Salmonella Typhimurium. Genetics. 1960 Jun;45(6):755–762. doi: 10.1093/genetics/45.6.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rao R. N. Bacteriophage P22 controlled exclusion in Salmonella typhimurium. J Mol Biol. 1968 Aug 14;35(3):607–622. doi: 10.1016/s0022-2836(68)80017-8. [DOI] [PubMed] [Google Scholar]
- Sinha N. K., Snustad D. P. DNA synthesis in bacteriophage T4-infected Escherichia coli: evidence supporting a stoichiometric role for gene 32-product. J Mol Biol. 1971 Nov 28;62(1):267–271. doi: 10.1016/0022-2836(71)90145-8. [DOI] [PubMed] [Google Scholar]
- Smith H. O. Defective phage formation by lysogens of integration deficient phage P22 mutants. Virology. 1968 Feb;34(2):203–223. doi: 10.1016/0042-6822(68)90231-6. [DOI] [PubMed] [Google Scholar]
- Smith H. O., Levine M. A phage P22 gene controlling integration of prophage. Virology. 1967 Feb;31(2):207–216. doi: 10.1016/0042-6822(67)90164-x. [DOI] [PubMed] [Google Scholar]
- Studier F. W. Bacteriophage T7. Science. 1972 Apr 28;176(4033):367–376. doi: 10.1126/science.176.4033.367. [DOI] [PubMed] [Google Scholar]
- Susskind M. M., Botstein D., Wright A. Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. III. Failure of superinfecting phage DNA to enter sieA+ lysogens. Virology. 1974 Dec;62(2):350–366. doi: 10.1016/0042-6822(74)90398-5. [DOI] [PubMed] [Google Scholar]
- Susskind M. M., Wright A., Botstein D. Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. II. Genetic evidence for two exclusion systems. Virology. 1971 Sep;45(3):638–652. doi: 10.1016/0042-6822(71)90178-4. [DOI] [PubMed] [Google Scholar]
- Walsh J., Meynell G. G. The isolation of non-excluding mutants of phage P22. J Gen Virol. 1967 Oct;1(4):581–582. doi: 10.1099/0022-1317-1-4-581. [DOI] [PubMed] [Google Scholar]
- Woodworth-Gutai M., Israel V., Levine M. New deoxyribonuclease activity after bacteriophage P22 infection. J Virol. 1972 May;9(5):746–751. doi: 10.1128/jvi.9.5.746-751.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]