Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1971 Mar;7(3):323–331. doi: 10.1128/jvi.7.3.323-331.1971

Photodynamic Action of Proflavine on Coliphage T3 III. Damages to the Deoxyribonucleic Acid Associated with R×1 and R×2

Heman Witmer 1, Dean Fraser 1
PMCID: PMC356122  PMID: 4927525

Abstract

Ultracentrifugational studies with deoxyribonucleic acid (DNA) extracted from phage exposed to light in the presence of either 0.25 or 8.5 μg of proflavine per ml reveal that the lethal damage of R×1 renders DNA alkali-labile, with lethality resulting from damage that occurs singly on either strand or simultaneously on both strands. Apparently nonlethal damages temporally associated with R×1 consist of (i) heat and alkali-labile cross-links (which produce undenatured DNA that migrates at 45S) and (ii) heat-labile bonds. The formation of 45S material is a linear function of light dose, and the production of this material ceases when R×2 appears at the higher dye concentration. No tendency to plateau is seen at 0.25 μg of dye per ml. The nature of the lethal damage of R×2 could not be determined. Damages that were temporally associated with R×2 at 8.5 μg of dye per ml were heat-labile, alkali-stable cross-links (undenatured DNA, 38 to 41S; alkali-denatured-reneutralized DNA, 85 to 89S) and some double-stranded breaks. No such changes were seen at 0.25 μg of dye per ml.

Full text

PDF
323

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bode V. C. Single-strand scissions induced in circular and linear lambda DNA by the presence of dithiothreitol and other reducing agents. J Mol Biol. 1967 May 28;26(1):125–129. doi: 10.1016/0022-2836(67)90266-5. [DOI] [PubMed] [Google Scholar]
  2. DAVISON P. F., FREIFELDER D., HOLLOWAY B. W. INTERRUPTIONS IN THE POLYNUCLEOTIDE STRANDS IN BACTERIOPHAGE DNA. J Mol Biol. 1964 Jan;8:1–10. doi: 10.1016/s0022-2836(64)80142-x. [DOI] [PubMed] [Google Scholar]
  3. Freifelder D. Mechanism of inactivation of coliphage T7 by x-rays. Proc Natl Acad Sci U S A. 1965 Jul;54(1):128–134. doi: 10.1073/pnas.54.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Freifelder D., Uretz R. B. Mechanism of photoinactivation of coliphage T-7 sensitized by acridine orange. Virology. 1966 Sep;30(1):97–103. doi: 10.1016/s0042-6822(66)81013-9. [DOI] [PubMed] [Google Scholar]
  5. Ritchie D. A. Mutagenesis with light and proflavine in phage T4. II. Properties of the mutants. Genet Res. 1965 Nov;6(3):474–478. doi: 10.1017/s0016672300004353. [DOI] [PubMed] [Google Scholar]
  6. Ritchie D. A. The photodynamic action of proflavine on phage T4. Biochem Biophys Res Commun. 1965 Sep 22;20(6):720–726. doi: 10.1016/0006-291x(65)90076-8. [DOI] [PubMed] [Google Scholar]
  7. SHAPIRO H. S., CHARGAFF E. STUDIES ON THE NUCLEOTIDE ARRANGEMENT IN DEOXYRIBONUCLEIC ACIDS. 8. A COMPARISON OF PROCEDURES FOR THE DETERMINATION OF THE FREQUENCY OF PYRIMIDINE NUCLEOTIDE RUNS. Biochim Biophys Acta. 1964 Oct 16;91:262–270. doi: 10.1016/0926-6550(64)90250-6. [DOI] [PubMed] [Google Scholar]
  8. SIMON M. I., VAN VUNAKIS H. The photodynamic reaction of methylene blue with deoxyribonucleic acid. J Mol Biol. 1962 Jun;4:488–499. doi: 10.1016/s0022-2836(62)80104-1. [DOI] [PubMed] [Google Scholar]
  9. STACEY K. A., COBB M., COUSENS S. F., ALEXANDER P. The reactions of the radiomimetic alkylating agents with macromolecules in vitro. Ann N Y Acad Sci. 1958 Apr 24;68(3):682–701. doi: 10.1111/j.1749-6632.1958.tb42634.x. [DOI] [PubMed] [Google Scholar]
  10. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  11. Sastry K. S., Gordon M. P. The photodynamic inactivation of tobacco mosaic virus and its ribonucleic acid by acridine orange. Biochim Biophys Acta. 1966 Oct 24;129(1):32–41. doi: 10.1016/0005-2787(66)90005-0. [DOI] [PubMed] [Google Scholar]
  12. Sastry K. S., Gordon M. P. The photosensitized degradation of guanosine by acridine orange. Biochim Biophys Acta. 1966 Oct 24;129(1):42–48. doi: 10.1016/0005-2787(66)90006-2. [DOI] [PubMed] [Google Scholar]
  13. Seaman E., Levine L., Van Vunakis H. Antibodies to the methylene blue sensitized photooxidation product in deoxyribonucleic acid. Biochemistry. 1966 Apr;5(4):1216–1223. doi: 10.1021/bi00868a015. [DOI] [PubMed] [Google Scholar]
  14. Shapiro H. S., Rudner R., Miura K. I., Chargaff E. Inferences from the distribution of pyrimidine isostichs in deoxyribonucleic acids. Nature. 1965 Mar 13;205(976):1068–1070. doi: 10.1038/2051068a0. [DOI] [PubMed] [Google Scholar]
  15. Singer B., Fraenkel-Conrat H. Dye-catalyzed photoinactivation of tobacco mosaic virus ribonucleic acid. Biochemistry. 1966 Jul;5(7):2446–2450. doi: 10.1021/bi00871a039. [DOI] [PubMed] [Google Scholar]
  16. Szybalski W., Kubinski H., Sheldrick P. Pyrimidine clusters on the transcribing strand of DNA and their possible role in the initiation of RNA synthesis. Cold Spring Harb Symp Quant Biol. 1966;31:123–127. doi: 10.1101/sqb.1966.031.01.019. [DOI] [PubMed] [Google Scholar]
  17. WELSH J. N., ADAMS M. H. Photodynamic inactivation of bacteriophage. J Bacteriol. 1954 Jul;68(1):122–127. doi: 10.1128/jb.68.1.122-127.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Witmer H., Fraser D. Photodynamic action of proflavine on coliphage T3. I. Kinetics of inactivation. J Virol. 1971 Mar;7(3):314–318. doi: 10.1128/jvi.7.3.314-318.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Witmer H., Fraser D. Photodynamic action of proflavine on coliphage T3. II. Protection by L-cysteine. J Virol. 1971 Mar;7(3):319–322. doi: 10.1128/jvi.7.3.319-322.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES