Abstract
Temperature-sensitive (ts) mutants representative of a number of genes of phage T4 were crossed with rII mutants to allow isolation of ts, rII double-mutant recombinants. The rII mutations used were characterized as frameshift mutations primarily on the basis of their revertability by proflavine. For each ts, rII double mutant, the effect of the ts mutation on spontaneous reversion of the rII mutation was determined over a range of incubation temperatures. A strong enhancement in reversion of two different rII mutants was detected when they were combined with tsL56, a mutation in gene 43 [deoxyribonucleic acid (DNA) polymerase]. Three other mutants defective in gene 43 enhanced reversion about fourfold. Two mutations in gene 32, which specifies a protein necessary for DNA replication, enhanced reversion about 5-fold and 18-fold, respectively. Two additional mutations in gene 43 and two in gene 32 had no effect. Fivefold and threefold enhancements in reversion were also found with mutations in genes 44 (DNA synthesis) and 47 (deoxyribonuclease), respectively. No significant effect was found with mutations in seven additional genes. The results of other workers suggest that frameshift mutations arise from errors in strand alignment during repair synthesis occurring at chromosome tips. Our results show that such errors can be enhanced by mutations in the DNA polymerase, the gene 32 protein, and the enzymes specified by genes 44 and 47. This implies that these proteins are employed in the repair process occurring at chromosome tips and that mutational errors in these proteins can lead to loss of ability to recognize and reject strand misalignments.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alberts B. M. Function of gene 32-protein, a new protein essential for the genetic recombination and replication of T4 bacteriophage DNA. Fed Proc. 1970 May-Jun;29(3):1154–1163. [PubMed] [Google Scholar]
- Baldy M. W. The UV sensitivity of some early-function temperature-sensitive mutants of phage T4. Virology. 1970 Feb;40(2):272–287. doi: 10.1016/0042-6822(70)90403-4. [DOI] [PubMed] [Google Scholar]
- Bernstein H. Repair and recombination in phage T4. I. Genes affecting recombination. Cold Spring Harb Symp Quant Biol. 1968;33:325–331. doi: 10.1101/sqb.1968.033.01.037. [DOI] [PubMed] [Google Scholar]
- Bernstein H. The effect on recombination of mutational defects in the DNA-polymerase and deoxycytidylate hydroxymethylase of phage T4D. Genetics. 1967 Aug;56(4):755–769. doi: 10.1093/genetics/56.4.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHAMPE S. P., BENZER S. Reversal of mutant phenotypes by 5-fluorouracil: an approach to nucleotide sequences in messenger-RNA. Proc Natl Acad Sci U S A. 1962 Apr 15;48:532–546. doi: 10.1073/pnas.48.4.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRICK F. H., BARNETT L., BRENNER S., WATTS-TOBIN R. J. General nature of the genetic code for proteins. Nature. 1961 Dec 30;192:1227–1232. doi: 10.1038/1921227a0. [DOI] [PubMed] [Google Scholar]
- De Waard A., Paul A. V., Lehman I. R. The structural gene for deoxyribonucleic acid polymerase in bacteriophages T4 and T5. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1241–1248. doi: 10.1073/pnas.54.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drake J. W., Allen E. F., Forsberg S. A., Preparata R. M., Greening E. O. Genetic control of mutation rates in bacteriophageT4. Nature. 1969 Mar 22;221(5186):1128–1132. [PubMed] [Google Scholar]
- EDGAR R. S., FEYNMAN R. P., KLEIN S., LIELAUSIS I., STEINBERG C. M. Mapping experiments with r mutants of bacteriophage T4D. Genetics. 1962 Feb;47:179–186. doi: 10.1093/genetics/47.2.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EDGAR R. S., LIELAUSIS I. TEMPERATURE-SENSITIVE MUTANTS OF BACTERIOPHAGE T4D: THEIR ISOLATION AND GENETIC CHARACTERIZATION. Genetics. 1964 Apr;49:649–662. doi: 10.1093/genetics/49.4.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freese E. B., Freese E. On the specificity of DNA polymerase. Proc Natl Acad Sci U S A. 1967 Mar;57(3):650–657. doi: 10.1073/pnas.57.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindstrom D. M., Drake J. W. Mechanics of frameshift mutagenesis in bacteriophage T4: role of chromosome tips. Proc Natl Acad Sci U S A. 1970 Mar;65(3):617–624. doi: 10.1073/pnas.65.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ORGEL A., BRENNER S. Mutagenesis of bacteriophage T4 by acridines. J Mol Biol. 1961 Dec;3:762–768. doi: 10.1016/s0022-2836(61)80081-8. [DOI] [PubMed] [Google Scholar]
- Prozorov A. A., Barabanshchikov B. I. Skorost' spontannogo mutatsionnogo protsessa u shtamma Bac. subtilis s narushennoi sposobnost'iu k rekombinatsii. Dokl Akad Nauk SSSR. 1967 Sep;176(6):1422–1424. [PubMed] [Google Scholar]
- Sarabhai A., Lamfrom H. Mechanism of proflavin mutagenesis. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1196–1197. doi: 10.1073/pnas.63.4.1196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Speyer J. F., Karam J. D., Lenny A. B. On the role of DNA polymerase in base selection. Cold Spring Harb Symp Quant Biol. 1966;31:693–697. doi: 10.1101/sqb.1966.031.01.088. [DOI] [PubMed] [Google Scholar]
- Streisinger G., Okada Y., Emrich J., Newton J., Tsugita A., Terzaghi E., Inouye M. Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harb Symp Quant Biol. 1966;31:77–84. doi: 10.1101/sqb.1966.031.01.014. [DOI] [PubMed] [Google Scholar]
- Warner H. R., Barnes J. E. Deoxyribonucleic acid synthesis in Escherichia coli infected with some deoxyribonucleic acid polymerase-less mutants of bacteriophage T4. Virology. 1966 Jan;28(1):100–107. doi: 10.1016/0042-6822(66)90310-2. [DOI] [PubMed] [Google Scholar]
- Wiberg J. S. Mutants of bacteriophage T4 unable to cause breakdown of host DNA. Proc Natl Acad Sci U S A. 1966 Mar;55(3):614–621. doi: 10.1073/pnas.55.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
