Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1971 Apr;7(4):491–498. doi: 10.1128/jvi.7.4.491-498.1971

Replication and Recombination in Ligase-Deficient rII Bacteriophage T4D

H M Krisch 1, D B Shah 1, Hillard Berger 1
PMCID: PMC356149  PMID: 4939386

Abstract

Deoxyribonucleic acid replication and genetic recombination were investigated after infection of Escherichia coli with ligase-deficient rII bacteriophage T4D. The major observations are: (i) deoxyribonucleic acid synthesis is discontinuous, (ii) the discontinuities are more slowly repaired than in wild-type infection, (iii) host ligase is required for viability, and (iv) genetic recombination is increased.

Full text

PDF
491

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger H., Kozinski A. W. Suppression of T4D ligase mutations by rIIa and rIIb mutations. Proc Natl Acad Sci U S A. 1969 Nov;64(3):897–904. doi: 10.1073/pnas.64.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chase M, Doermann A H. High Negative Interference over Short Segments of the Genetic Structure of Bacteriophage T4. Genetics. 1958 May;43(3):332–353. doi: 10.1093/genetics/43.3.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gellert M., Bullock M. L. DNA ligase mutants of Escherichia coli. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1580–1587. doi: 10.1073/pnas.67.3.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Iwatsuki N., Okazaki R. Mechanism of DNA chain growth. V. Effect of chloramphenicol on the formation of T4 nascent short DNA chains. J Mol Biol. 1970 Aug 28;52(1):37–44. doi: 10.1016/0022-2836(70)90175-0. [DOI] [PubMed] [Google Scholar]
  5. Karam J. D. DNA replication of phage T4 rII mutants without polynucleotide ligase (gene 30). Biochem Biophys Res Commun. 1969 Oct 22;37(3):416–422. doi: 10.1016/0006-291x(69)90931-0. [DOI] [PubMed] [Google Scholar]
  6. Kozinski A. W., Kozinski P. B., Shannon P. REPLICATIVE FRAGMENTATION IN T4 PHAGE: INHIBITION BY CHLORAMPHENICOL. Proc Natl Acad Sci U S A. 1963 Oct;50(4):746–753. doi: 10.1073/pnas.50.4.746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kozinski A. W., Mitchell M. Restoration by Chloramphenicol of Bacteriophage Production in Escherichia coli B Infected with a Ligase-Deficient Amber Mutant. J Virol. 1969 Dec;4(6):823–836. doi: 10.1128/jvi.4.6.823-836.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kozinski A. W. Molecular recombination in the ligase negative T4 amber mutant. Cold Spring Harb Symp Quant Biol. 1968;33:375–391. doi: 10.1101/sqb.1968.033.01.044. [DOI] [PubMed] [Google Scholar]
  9. Levinthal C, Visconti N. Growth and Recombination in Bacterial Viruses. Genetics. 1953 Sep;38(5):500–511. doi: 10.1093/genetics/38.5.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mattson T. L. Recombination of bacteriophage T4 stimulated by 9-aminoacridine. Genetics. 1970 Aug;65(4):535–544. doi: 10.1093/genetics/65.4.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pauling C., Hamm L. Properties of a temperature-sensitive radiation-sensitive mutant of Escherichia coli. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1495–1502. doi: 10.1073/pnas.60.4.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pauling C., Hamm L. Properties of a temperature-sensitive, radiation-sensitive mutant of Escherichia coli. II. DNA replication. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1195–1202. doi: 10.1073/pnas.64.4.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES