Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1971 May;7(5):646–650. doi: 10.1128/jvi.7.5.646-650.1971

Transfection of Escherichia coli Spheroplasts I. General Facilitation of Double-Stranded Deoxyribonucleic Acid Infectivity by Protamine Sulfate

Rolf Benzinger 1, Ingrid Kleber 1, Robert Huskey 1
PMCID: PMC356175  PMID: 4997550

Abstract

The addition of 25 μg of protamine sulfate per ml to lysozyme-ethylenediamine-tetraacetic acid spheroplasts of Escherichia coli stimulates transfection not only for T1 phage deoxyribonucleic acid (DNA; Hotz and Mauser, 1969) but also for the following phage DNA species: lambda, 10,000-fold to an efficiency of 10−3 infective centers per DNA molecule; φX174 replicative form, 300-fold to an efficiency of 5 × 10−2; fd replicative form, 300-fold to 10−6; T7, 300-fold to 3 × 10−7. Three native phage DNA species were not infective at all in the absence of protamine sulfate but were infective in the presence of protamine sulfate with the following efficiencies: T4, 10−5; T5, 3 × 10−6; and P22, 3 × 10−9. The effect of protamine sulfate is specific for double-stranded DNA. The application of infectivity assays to the study of phage DNA replication, recombination, prophage integration, prophage excision, and interspecies transfection are discussed.

Full text

PDF
646

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benzinger R., Delius H., Janenisch R., Hofschneider P. H. Infectious nucleic acids of Escherichia coli bacteriophages. 10. Preparation and properties of Escherichia coli competent for infectious DNA from bacteriophages phi X 174 and M 13 and RNA from bacteriophage M 12. Eur J Biochem. 1967 Nov;2(4):414–428. doi: 10.1111/j.1432-1033.1967.tb00154.x. [DOI] [PubMed] [Google Scholar]
  2. Chilton M. D., Hall B. D. Transforming activity in single-stranded DNA from Bacillus subtilis. J Mol Biol. 1968 Jun 28;34(3):439–451. doi: 10.1016/0022-2836(68)90171-x. [DOI] [PubMed] [Google Scholar]
  3. FRASER D., JERREL E. A. The amino acid composition of T3 bacteriophage. J Biol Chem. 1953 Nov;205(1):291–295. [PubMed] [Google Scholar]
  4. GUTHRIE G. D., SINSHEIMER R. L. Observations on the infection of bacterial protoplasts with the deoxyribonucleic acid of bacteriophage phi X174. Biochim Biophys Acta. 1963 Jun 25;72:290–297. [PubMed] [Google Scholar]
  5. Hotz G., Mauser R. Infectious DNA from coliphage T1. I. Some properties of the spheroplast assay system. Mol Gen Genet. 1969;104(2):178–194. doi: 10.1007/BF00272800. [DOI] [PubMed] [Google Scholar]
  6. Jaenisch R., Hofschneider P. H., Preuss A. Isolation of circular DNA by zonal centrifugation. Separation of normallength, double length and catenated M13 replicative form DNA and of host specific "episomal" DNA. Biochim Biophys Acta. 1969 Sep 17;190(1):88–100. doi: 10.1016/0005-2787(69)90157-9. [DOI] [PubMed] [Google Scholar]
  7. MEYER F., MACKAL R. P., TAO M., EVANS E. A., Jr Infectious deoxyribonucleic acid from gamma bacteriophage. J Biol Chem. 1961 Apr;236:1141–1143. [PubMed] [Google Scholar]
  8. Mackal R. P., Werninghaus B., Evans E. A., Jr Origin of DNA and protein in lambda DNA infected disrupted cell preparations. Biochem Biophys Res Commun. 1971 Jan 8;42(1):89–96. doi: 10.1016/0006-291x(71)90366-4. [DOI] [PubMed] [Google Scholar]
  9. PARANCHYCH W. Assay of infectious RNA from bacteriophage R 17. Biochem Biophys Res Commun. 1963 Apr 2;11:28–33. doi: 10.1016/0006-291x(63)90022-6. [DOI] [PubMed] [Google Scholar]
  10. Postel E. H., Goodgal S. H. Uptake of "single-stranded" DNA in Hemophilus influenzae and its ability to transform. J Mol Biol. 1966 Apr;16(2):317–327. doi: 10.1016/s0022-2836(66)80175-4. [DOI] [PubMed] [Google Scholar]
  11. SMULL C. E., LUDWIG E. H. Enhancement of the plaque-forming capacity of poliovirus ribonucleic acid with basic proteins. J Bacteriol. 1962 Nov;84:1035–1040. doi: 10.1128/jb.84.5.1035-1040.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  13. Sadowski P. D., Hurwitz J. Enzymatic breakage of deoxyribonucleic acid. I. Purification and properties of endonuclease II from T4 phage-infected Escherichia coli. J Biol Chem. 1969 Nov 25;244(22):6182–6191. [PubMed] [Google Scholar]
  14. TOMIZAWA J. I., ANRAKU N. MOLECULAR MECHANISMS OF GENETIC RECOMBINATION IN BACTERIOPHAGE. II. JOINING OF PARENTAL DNA MOLECULES OF PHAGE T4. J Mol Biol. 1964 Apr;8:516–540. doi: 10.1016/s0022-2836(64)80009-7. [DOI] [PubMed] [Google Scholar]
  15. Yamamoto K. R., Alberts B. M., Benzinger R., Lawhorne L., Treiber G. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology. 1970 Mar;40(3):734–744. doi: 10.1016/0042-6822(70)90218-7. [DOI] [PubMed] [Google Scholar]
  16. Young E. T., 2nd, Sinsheimer R. L. Vegetative bacteriophage lambda-DNA. I. Infectivity in a spheroplast assay. J Mol Biol. 1967 Nov 28;30(1):147–164. doi: 10.1016/0022-2836(67)90250-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES