Skip to main content
World Journal of Hepatology logoLink to World Journal of Hepatology
. 2013 Jan 27;5(1):16–25. doi: 10.4254/wjh.v5.i1.16

Diagnosis and management of bacterial infections in decompensated cirrhosis

Maria Pleguezuelo 1, Jose Manuel Benitez 1, Juan Jurado 1, Jose Luis Montero 1, Manuel De la Mata 1
PMCID: PMC3562722  PMID: 23383362

Abstract

Bacterial infections are one of the most frequent complications in cirrhosis and result in high mortality rates. Patients with cirrhosis have altered and impaired immunity, which favours bacterial translocation. Episodes of infections are more frequent in patients with decompensated cirrhosis than those with compensated liver disease. The most common and life-threatening infection in cirrhosis is spontaneous bacterial peritonitis followed by urinary tract infections, pneumonia, endocarditis and skin and soft-tissue infections. Patients with decompensated cirrhosis have increased risk of developing sepsis, multiple organ failure and death. Risk factors associated with the development of infections are severe liver failure, variceal bleeding, low ascitic protein level and prior episodes of spontaneous bacterial peritonitis (SBP). The prognosis of these patients is closely related to a prompt and accurate diagnosis. An appropriate treatment decreases the mortality rates. Preventive strategies are the mainstay of the management of these patients. Empirical antibiotics should be started immediately following the diagnosis of SBP and the first-line antibiotic treatment is third-generation cephalosporins. However, the efficacy of currently recommended empirical antibiotic therapy is very low in nosocomial infections including SBP, compared to community-acquired episodes. This may be associated with the emergence of infections caused by Enterococcus faecium and extended-spectrum β-lactamase-producing Enterobacteriaceae, which are resistant to the first line antimicrobial agents used for treatment. The emergence of resistant bacteria, underlines the need to restrict the use of prophylactic antibiotics to patients with the greatest risk of infections. Nosocomial infections should be treated with wide spectrum antibiotics. Further studies of early diagnosis, prevention and treatment are needed to improve the outcomes in patients with decompensated cirrhosis.

Keywords: Cirrhosis, Infections, Spontaneous bacterial peritonitis, Ascites, Antibiotics

INTRODUCTION

Bacterial infections are one of the most frequent complications in cirrhosis, particularly in decompensated patients, and account for significant mortality. The current prevalence of this complication ranges between 25% and 30%[1,2] and is responsible for 30%-50% of deaths in these patients[3]. The cumulative mortality after any infection in patients with cirrhosis is 43.5%. It has been suggested that the occurrence of bacterial infection could be considered a further prognosis stage, defining the critically ill cirrhotic[4]. Risk factors associated with the development of infections are high Child-Pugh score, variceal bleeding, low ascitic protein level and prior episodes of spontaneous bacterial peritonitis (SBP).

The most common infections in cirrhosis are SBP[5], followed by urinary tract infections, pneumonia and cellulitis[6]. Sixty percent of bacterial infections are community-acquired and 40% are nosocomial. In hospitalized cirrhotic patients, the most frequent infections are healthcare-associated or hospital-acquired and these infections are frequently resistant to antibiotics. The most frequent causative organisms in community-acquired infections are gram-negative bacilli, mainly Escherichia coli (E. coli) (60%). The emergence of extended-spectrum beta-lactamase (ESBL)-producing enterobacteria in nosocomial infections has meant that gram-positive cocci are no longer the main bacteria isolated in hospital-acquired infections. Moreover, nosocomial SBP are mainly caused by gram-negative bacteria. However, cultures are positive only in 40%-70% of infections. The treatment of choice for the most common infections occurring in cirrhosis is third-generation cephalosporins since they are active against Enterobacteriaceae and non-enterococcal streptococci as well as being well tolerated[7-9]. However, recent studies have shown that the prevalence of infections caused by multiresistant bacteria is increasing in cirrhosis[10].

Immune defects, mainly acquired but also genetic, and bacterial translocation are the principal mechanism involved in the pathogenesis of infection in cirrhosis[11]. Liver dysfunction is associated with an impaired defense against bacteria, which worsens over time and with disease progression. Both humoral and cell-mediated immunity are depressed. In cirrhosis, decreased bacterial clearance as well as structural and functional alterations in the intestinal mucosa lead to an increase in permeability to bacteria and derived products. This favours bacterial translocation, which increases the susceptibility to infection, particularly SBP. Deficiencies in C3 and C4, impairment of macrophage Fcγ-receptor mediated clearance of antibody-coated bacteria and down-regulation of monocyte human leukocyte antigen-DR expression, may also contribute to this altered defense[12]. In some cases a deregulated immune response produces an important production of inflammatory mediators, which leads to an excessive pro-inflammatory response. This process may contribute to renal impairment, multiple organ failure and high mortality rate[13].

Bacterial infections, regardless of the aetiology, are a severe complication of decompensated cirrhosis, and result in increased mortality and longer hospital stay. The most important predictive factor for mortality after infection is renal failure. The release of inflammatory mediators during infection leads to systemic, renal, and hepatic hemodynamic impairment, which dramatically affects the prognosis even after resolution of infection. The mortality rate after infection in patients with cirrhosis remains high and has not significantly changed over recent decades[4]. The widespread use of quinolones and other antibiotics in cirrhosis has favoured changes in bacterial flora and the development of antibiotic resistance. To improve outcomes, new studies of early diagnosis, prevention and treatment are needed.

DIAGNOSIS OF BACTERIAL INFECTIONS

Early diagnosis and treatment of infections are of paramount importance for the management of patients with decompensated cirrhosis, since bacterial infections are important causes of mortality and morbidity in these patients. Patients with decompensated cirrhosis have increased risk of developing sepsis, multiple organ failure and death[14]. Mortality associated to infections is twenty times higher in patients with cirrhosis than in the general population.

Bacterial infections in patients with cirrhosis can be asymptomatic or pauci-symptomatic, and have to be suspected in any cirrhotic patient with a sudden impairment of liver function[15]. The prognosis of these patients is mainly dependent on a prompt and accurate diagnosis[2]. Identification of the source of infection is the primary concern when deciding on the appropriate antibiotic therapy. The first evaluation must include a detailed physical examination including vital signs (temperature, respiratory and heart rates, mean arterial pressure), abdominal and chest examination, and evaluation of the presence of skin lesions. A complete work-up must include a range of diagnostic tests such as blood cell count and culture, urinary sediment and culture, chest X-ray, sputum culture, ascitic/pleural fluid cultures and abdominal ultrasonography[11].

Diagnosis of spontaneous bacterial peritonitis

SBP is defined as an infection of the ascitic fluid in the absence of a contagious cause of infection (e.g., intestinal perforation or abscess)[7]. SBP is a frequent and severe complication of cirrhosis, with an incidence in hospitalized patients with cirrhosis of 7%-25%. Prospective studies have shown that one-year mortality rates following an episode of SBP, range from 65% to 93%[16]. Risk factors for SBP include impaired liver function, gastrointestinal bleeding, high bilirubin levels, low ascitic fluid protein (< 10-15 g/L), and a prior episode of SBP.

Abdominal pain and fever are the most common symptoms, followed by vomiting, hepatic encephalopathy, gastrointestinal bleeding and renal dysfunction. However, symptoms and signs are sometimes absent[17]. In 40%-60% of cases, the organism responsible for SBP is isolated in ascitic fluid or blood cultures[1-4,6]. Diagnostic paracentesis should be carried out in all patients with ascites who are admitted to hospital, regardless of symptoms[18].

Diagnosis of SBP is based on the demonstration of an absolute number of polymorphonuclear cells in ascitic fluid equal to or greater than 250/mm3. Diagnosis of SBP constitutes an indication to initiate an empirical antibiotic therapy and must not be delayed until the ascites bacteriological culture results are available[7,8]. The best specificity for diagnosis has been reported[19-22] with a cut-off of 500 PMN/mm3. It is unclear whether a positive culture in the absence of elevated ascitic fluid PMN count (bacteriascites), requires antibiotic therapy. In these cases, some guidelines recommend antibiotic treatment only if the patient shows signs of infection[8]. Leukocyte reagent strips have been suggested as a rapid screening test for the diagnosis of SBP at the bedside[23-26]. However, sensitivity varying between 45% and 100%, makes this method suboptimal for the diagnosis of SBP. In patients with hemorrhagic ascites (red blood cell count > 10 000/mm3), subtraction of one PMN per 250 red blood cells should be made. When there is a predominant lymphocytosis in the ascitic fluid, the differential diagnosis must include tuberculous peritonitis, neoplasms, congestive heart failure, pancreatitis and myxedema, but usually not SBP[18]. Other markers that have been suggested for the diagnosis of SBP are lactoferrin, an iron-binding protein contained in PMN, which has a sensitivity of 96% and a specificity of 97% with cut-off value of ≥ 242 ng/mL in ascitic fluid[27].

The most frequently identified organisms in patients with SBP are gram-negative bacteria (E. coli) and gram-positive cocci (streptococcus and enterococcus). Approximately, 30% of isolated gram-negative bacteria are resistant to quinolones and this resistance is higher in patients undergoing norfloxacin therapy[9]. The most frequent causative organisms in community-acquired SBP are gram-negative bacteria, while in nosocomial infections gram-positive organisms are responsible for most infections.

Secondary peritonitis constitutes the main differential diagnosis of SBP, accounting for 5%-10% of all peritonitis in patients with cirrhosis and ascites. This is due to perforation or inflammation of an intra-abdominal organ, and its mortality is much higher than that of SBP (66% vs 10%)[28]. Secondary peritonitis must be suspected in patients with inadequate response to therapy or when multiple organisms are identified in the ascitic fluid[29]. A diagnosis of secondary peritonitis is probable when at least two of the Runyon’s criteria are present: glucose level < 50 mg/dL; protein concentration > 10 g/L; or lactate dehydrogenase > 225 mU/mL[8]. When secondary peritonitis is suspected, an abdominal computerized tomography should be performed as soon as possible[30].

Other infections in patients with cirrhosis

Urinary tract infections: Urinary tract infections (UTI) in cirrhosis can be asymptomatic or oligosymptomatic, and asymptomatic bacteriuria is frequent[31,32]. The incidence of UTI is higher in cirrhotic patients with indwelling catheters and in women. The most frequent bacteria causing UTI are E. coli and Klebsiella pneumoniae (K. pneumonia). Quinolones are not recommended for the treatment of UTI in areas with a high prevalence of quinolone-resistant enterobacteria, such as Southern Europe. Amoxicillin-clavulanic acid or an oral cephalosporin should be considered in these high-risk patients[33-35].

Pneumonia: Pneumonia is the third most common infection in liver cirrhosis, after SBP and UTI. Community-acquired pneumonia is most frequent, especially in subjects with active alcoholism[36]. Streptococcus pneumonia is the most common causative organism, followed by anaerobic bacteria or Haemophilus influenza, K. pneumonia, Mycoplasma pneumonia or Legionella[37,38]. The initial treatment of choice should include macrolides combined with one of the following: cefotaxime, ceftriaxone, amoxicillin-clavulanic acid, imipenem or piperacillin-tazobactam. Factors such as tracheal intubation and hepatic encephalopathy may predispose for hospital-acquired pneumonia, mainly caused by gram-negative bacilli and staphylococci. In these cases, the treatment should be adapted to the local epidemiological pattern of resistant bacteria; meropenem or ceftazidime plus ciprofloxacin may be an adequate option. Vancomycin or linezolid should be added in patients with risk factors for methicillin-resistant Staphylococcus aureus (MRSA) (Ventilator-associated pneumonia, previous antibiotic therapy, nasal MRSA carriage).

Endocarditis: Streptococcus and Staphylococcus aureus are the most common causative organisms.

Skin and soft-tissue infections: Lymphangitis of the lower extremities and abdominal wall are frequent in cirrhotic patients with edema or ascites. The most common etiologic organisms are Staphylococcus aureus and Streptococcus pyogenes, followed by Enterobacteriaceae and anaerobes[39]. Empirical therapy with cloxacillin has been considered the first-choice. Amoxicillin-clavulanic acid or quinolones (i.e., ofloxacin) may be an adequate alternative. Cellulitis is usually treated with a combination of cloxacillin and a third-generation cephalosporin.

TREATMENT OF SBP IN PATIENTS WITH DECOMPENSATED CIRRHOSIS

In practice, third generation cephalosporins have already been established as the standard treatment of SBP[40-42]. However, the efficacy of currently recommended empirical antibiotic therapy is very low in nosocomial infections, including SBP, when compared to community-acquired episodes. Infections caused by multiresistant bacteria have increased nearly 100%, and are associated to a higher incidence of treatment failure, rapid deterioration of liver function and mortality. This change may be associated with the emergence of infections caused by Enterococcus faecium and extended-spectrum β-lactamase-producing Enterobacteriaceae, which are resistant to the current recommended empirical antibiotic therapy. This findings led to the suggestion that nosocomial SBP should be treated with carbapenems or with tigecycline[43].

Appropriate empirical antibiotic therapy is associated with improved survival. In the absence of ascitic fluid cultures, it is important to use broad-spectrum antibiotics, selected according to the type and severity of infection. Epidemiological factors, such as site of acquisition of the infection (nosocomial vs community-acquired infections), and previous history of multiresistant infection, must be taken into account[11]. Prevention and treatment of renal failure, sometimes triggered by infection, is of pivotal importance in the treatment of these patients. Therefore, some antibiotics, such as aminoglycosides, should not be used in cirrhosis because of the high risk of renal failure[44].

Treatment of community-acquired SBP

The organisms traditionally associated with community-acquired SBP are gram-negative bacteria, mainly Enterobacteriaceae. This family of bacteria usually shows optimal response to third-generation cephalosporins (e.g. cefotaxime). Amoxicillin-clavulanic acid and ciprofloxacin have shown similar results. Intravenous cefotaxime 2 g/12 h is considered the first-line antibiotic for the empirical treatment of SBP. A 5-d therapy is as effective as a 10 day treatment. Other effective and safe options are iv ceftriaxone 1 g/(12-24) h or iv amoxicillin-clavulanic acid (1-2) g/(6-8) h[45]. The use of fluoroquinolones (e.g., ciprofloxacin 200 mg/12 h, iv) has demonstrated similar efficacy. In patients with uncomplicated SBP (absence of gastrointestinal hemorrhage, severe encephalopathy, septic shock or creatinine > 3 mg/dL), oral ofloxacin (400 mg/12 h) may be an effective alternative. In patients who develop SBP while receiving norfloxacin prophylaxis, quinolones are not recommended and the best alternative is cefotaxime or amoxicillin/clavulanic acid. In SBP it is of crucial importance to assess the response to treatment by performing a follow-up paracentesis two days after initiation of the antibiotic therapy. A reduction in the ascitic fluid PMN count (< 25%), compared with the pretreatment value, is considered treatment failure and indicates the need for modification of the antibiotic treatment according to in vitro sensitivity.

Administration of albumin as adjuvant treatment to antibiotics is considered essential in patients with SBP and impaired renal or liver function, in order to prevent worsening of renal function[46-48]. The recommended dose is 1.5 g/kg on day 1 and 1 g/kg on day 3. The concomitant use of albumin decreases the incidence of type 1 hepatorenal syndrome (from 30% to 10%) and reduces mortality (from 29% to 10%), compared with cefotaxime alone. Treatment with albumin is particularly effective in patients with serum bilirubin ≥ 4 mg/dL or serum creatinine ≥ 1 mg/dL, while its use in patients without these criteria remains controversial[49]. However, in unselected patients with SBP, even low-dose albumin (10 g/d on day 1 and 3) reduces tumour necrosis factor and interleukin 6 levels in serum and ascites as well as preventing increases in serum nitric oxide induced by SBP[50].

Treatment of nosocomial SBP

Unfortunately, antibiotic therapy fails in 26%-41% of patients with SBP[51]. One of the explanations may be that current guidelines for the treatment of SBP do not distinguish between community-acquired and nosocomial episodes. Recent studies have reported an increasing prevalence of extended-spectrum β-lactamase-producing bacteria and multiresistant gram-positive bacteria such as Enteroccocus faecium or MRSA[52]. In fact, bacteria isolated in nosocomial SBP are frequently resistant to β-lactams (33%-78%), and this is associated with a low success rate in a significant proportion of nosocomial SBP[53-56], which are being treated with third generation cephalosporins, amoxicillin/clavulanic acid or quinolones.

Clinical and research efforts are focused on decreasing rates of mortality, morbidity and healthcare associated costs. The development of bacterial resistance in community-acquired SBP increases the risk of mortality four-fold, since it is usually associated with empirical treatment failure. Therefore, for an optimal treatment of nosocomial infections in patients with cirrhosis, epidemiological factors and patterns of resistance should be considered. Hospitalisation within the previous 3 mo, intensive care treatment, and prior antibiotic treatment, are independent risk factors for the development bacterial multi-resistance[57].

Carbapenems are the most effective option for nosocomial infections in areas with a high prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae. Tigecycline may be a potential alternative, although recent studies have showed increased mortality related to its low clinical efficacy and it should not, therefore, be recommended as first-line therapy in the general population[58]. Penicillin used in combination with β-lactamase inhibitors (e.g., piperacilin-tazobactam) may be an adequate alternative. However, the most appropriate antibiotic treatment in any particular case should be selected according to the results of the relevant microbiological studies.

PROPHYLAXIS OF SBP IN PATIENTS WITH DECOMPENSATED CIRRHOSIS

In patients with cirrhosis at high risk of SBP (low protein ascites and advanced liver dysfunction or impaired renal function), norfloxacin administration decreases the 1-year probability of developing this infection and hepatorenal syndrome, and moreover increases 3-mo and 1-year survival[29]. However, recent studies suggest that norfloxacin is not now as affective as it was in the past, possibly due to the development of quinolone-resistant bacteria in the fecal flora of patients receiving long-term prophylaxis. Thus, to prevent antibiotic resistance and to make these strategies cost-effective, antibiotic prophylaxis must be restricted to those patients at a very high risk of bacterial infections. Since the gut appears to be the main source of bacteria in SBP, a selective intestinal decontamination by elimination of gram-negative bacilli (mostly responsible for infections in cirrhosis) should be performed.

Primary prophylaxis in patients with gastro-intestinal bleeding

Cirrhotic patients with upper gastrointestinal bleeding are at high risk (25%-65%) of bacterial infections, particularly SBP, during the first 7 d after the bleeding episode. Moreover, bacterial infections increase the risk of early re-bleeding[59]. An increase in portal pressure and changes in hemostasis induced by infection have been suggested as possible mechanisms[60,61]. A beneficial effect of antibiotic prophylaxis on control of bleeding and prevention of re-bleeding has been reported[62]. Current guidelines recommend antibiotic prophylaxis in patients with cirrhosis and gastrointestinal bleeding regardless of the presence of ascites[9]. A meta-analysis of five trials comprising 534 cirrhotic patients with variceal haemorrhage, demonstrated that antibiotic prophylaxis for 4 to 10 d significantly reduced the occurrence of SBP and septicaemia, and improved short-term survival[63]. Similar results were seen in a more recent meta-analysis of twelve trials comprising a total of 1241 patients with cirrhosis and gastrointestinal bleeding, in which antibiotic prophylaxis significantly decreased the incidence of bacterial infections, re-bleeding, length of hospitalisation and mortality. Prophylaxis benefits were observed irrespective of the antibiotic used, although they were stronger with cephalosporins, quinolones and quinolones plus beta-lactams[64]. The use of antibiotic prophylaxis as secondary prevention of variceal bleeding may reduce the incidence of early re-bleeding, mainly in the first seven days after the first haemorrhage[65].

Currently, the recommended antibiotics are mainly oral quinolones (norfloxacin 400 mg bid for 7 d) or intravenous cephalosporins (ceftriaxone 1 g/d for 7 d). Norfloxacin is a poorly absorbed quinolone with antibacterial activity against gram-negative bacteria, which is simple to administer and has low cost. The main complication of long-term norfloxacin prophylaxis is the occurrence of infections by quinolone-resistant organism, which are usually susceptible to third-generation cephalosporins. This fact and the lack of efficacy of norfloxacin against gram-positive or anaerobic organisms, may explain the superiority shown by intravenous ceftriaxone over oral norfloxacin in a randomized controlled trial on patients with variceal bleeding and advanced cirrhosis (characterized by at least 2 of the following: ascites, severe malnutrition, encephalopathy, or bilirubin > 3 mg/dL)[66]. Invasive procedures used in patients with cirrhosis and haemorrhage are a risk factor for infections caused by gram-positive bacteria. Intravenous administration seems to be more appropriate than oral intake in patients with active upper bleeding who have vomits and very rapid intestinal transit. Intravenous ceftriaxone should, therefore, be used in the prophylaxis of bacterial infections in patients with advanced cirrhosis and upper gastrointestinal bleeding, whereas patients with less severe liver disease may be given oral norfloxacin or an alternative oral quinolone.

Therefore, in patients with upper gastrointestinal bleeding, antibiotic prophylaxis is considered essential. In patients with less severe liver disease norfloxacin may be given, whereas in those with severe liver disease ceftriaxone is the prophylactic antibiotic of choice. Timing of antibiotic administration is also important and prophylaxis should be started from admission, ideally before or immediately after endoscopy[67]. Local bacterial resistance profile and treatment costs, are other factors to consider in the selection of antibiotics.

Primary prophylaxis in patients with ascites

Primary prophylaxis in cirrhotic patients with ascites, but without gastrointestinal bleeding, is controversial. A recent meta-analysis including seven trials comparing antibiotic prophylaxis to no intervention or placebo, showed that the relative risk of SBP and mortality was lower in patients treated with antibiotics (RR 0.2; 0.11 to 0.37) than with no treatment or placebo (RR 0.6; 0.43 to 0.87)[16]. However, these findings must be taken with caution because of the low methodology quality of most of the trials and the likely existence of systematic bias in the trials included. Given the increasing emergence of resistant bacteria and the limited validity of these results, antibiotic prophylaxis in all patients with ascites without bleeding should not be recommended until we have more conclusive evidence.

However, it is well known that the risk of SBP in patients with ascites depends on ascitic fluid protein concentration, since it has been shown that low protein concentration (< 10-15 g/L) is a risk factor, and the incidence is greater in those with advanced liver disease. Several independent studies and meta-analysis have assessed this issue[68-71]. In a placebo-controlled trial on patients with protein ascitic levels < 15 g/L and advanced liver failure or impaired renal function, norfloxacin (400 mg/d) reduced the 1-year probability of developing SBP and improved the 3-mo survival, although at 1year the difference in survival was not significant[29]. Similarly, a placebo-controlled trial on patients with ascites protein < 15 g/L and moderate liver failure, showed that prophylaxis with ciprofloxacin for 12 mo improved the 1-year survival. However, there was no significant difference between groups in the occurrence of SBP or other infections[72]. A recent meta-analysis of these three trials supports the efficacy of quinolones in these settings, since it demonstrates significant preventive power for SBP and mortality[18]. A previous meta-analysis, which aimed to assess the effect of antibiotic prophylaxis in the prevention of SBP and survival, showed similar results. It included eight studies comprising 647 patients with cirrhosis at risk for developing SBP. In seven of the eight studies the mean ascitic fluid protein level was < 15 g/L. Criteria for defining advanced liver disease included Child-Pugh scores > 9, bilirubin levels > 2.5 mg/dL, and impaired renal function. The analysis showed that prophylaxis improved short-term survival and reduced the incidence of infections, including SBP[73]. These results suggest that primary prophylaxis has a great impact in the clinical course of patients with low ascites protein content and advanced cirrhosis, and may reduce the incidence of SBP and improve survival. Nevertheless, studies in patients with low ascitic fluid protein but without severe liver disease, have failed to show significant effect of norfloxacin on survival or in the occurrence of SBP[74].

To the light of these studies, patients with protein ascitic levels < 15 g/L and severe liver disease or renal impairment should be considered for long-term prophylaxis with norfloxacin (400 mg/d), particularly those patients awaiting liver transplantation, because antibiotic prophylaxis may increase the applicability of this procedure. The optimal duration of primary antibiotic prophylaxis has not been established. Oral ciprofloxacin is a valid alternative to norfloxacin. In patients with low protein concentration in ascitic fluid, but with mild or moderate liver disease, antibiotic prophylaxis is not currently recommended[9].

Secondary prophylaxis in patients with prior SBP

The probability of survival at 1 year after an episode of SBP is about 30%-50%[75], with a cumulative recurrence rate at 1year of 70%. Therefore, after one episode of SBP, liver transplantation must be considered. In all patients with a prior episode of SBP it is essential to initiate long-term antibiotic prophylaxis. For secondary prophylaxis, the evidence is strongest for norfloxacin (400 mg/d), since its use after an episode of SBP has been shown to reduce the recurrence from 70% to 20%[76]. This prophylactic strategy results in a substantial cost saving by avoiding resource utilization associated with treatment[77]. Intermitting antibiotic therapy schedules have been suggested as secondary prophylaxis, however this strategy may select resistant flora more rapidly and should, therefore, be avoided.

In these settings prophylaxis should be instituted after the completion of treatment for acute SBP and continued until liver transplantation or disappearance of ascites. The development of bacterial resistance is a potentially harmful complication of long-term antibiotic therapy, and it is greater with longer duration of antibiotic administration. In patients who develop resistance to quinolones, trimethoprim/sulfamethoxazole has been suggested as an alternative to norfloxacin[78]. However, there is a high rate of SBP caused by trimethoprimsulfamethoxazole resistant Gram-negative bacteria (44%-72%), suggesting that this antibiotic is not a suitable alternative to norfloxacin[79,80]. Data supporting the use of trimethoprim/sulfamethoxazole are weak, while its side effects are potentially dangerous and probably under-reported[81]. There are no data to support discontinuation of prophylaxis with quinolones in patients who develop infection due to quinolone-resistant bacteria. Antibiotic cycling or combined treatment regimes have been proposed to reduce the risk of emerging resistant bacteria, but there are no data supporting this strategy.

Probiotics, a non-antibiotic and safe therapy, may decrease bacterial translocation, since it has been reported that they can correct bacterial overgrowth, stabilize mucosal barrier function and decrease bacterial translocation in experimental conditions[82-84]. However Lactobacillus failed to reduce bacterial translocation and ascitic fluid infection in an animal model[85,86]. Further studies in patients with cirrhosis are needed to define the possible role of probiotics in SBP prophylaxis.

It has been suggested that acid-suppressive therapy with proton pump inhibitors (PPIs), which is widely used in patients with cirrhosis, may increase the risk of bacterial infections, since they cause bacterial overgrowth in the small intestine and increase intestinal permeability[87-92]. Several studies, including a meta-analysis[93] of four studies involving a total of 772 patients[94-98], found significant association between PPI and the development of SBP in patients with cirrhosis (odds ratio 2.77, 95%CI: 1.82-4.23). However, a recent study suggests that even though PPIs may be a contributing factor, the predominant factor determining infection risk is the stage of the liver disease[99]. Bajaj et al[100] identified PPI use as a risk factor for Clostridium Difficile Associated Disease (CDAD) in hospitalized patients with cirrhosis, which is associated with higher mortality, length of stay and costs. However, the relation between PPI use and CDAD has not been confirmed in other populations of patients with impaired immunity[101]. Therefore, more studies are needed to verify this association.

CONCLUSION

Bacterial infections in cirrhosis are common, accounting for significant mortality. Patients with decompensated cirrhosis have more frequent episodes of infection than those with compensated liver disease. Spontaneous bacterial peritonitis is the most common infection in these patients. The development of cirrhosis is associated with impairment in the immune system, which worsens over time, and with disease progression. Risk factors associated with development of infections in cirrhosis are severe liver failure, variceal bleeding, low ascitic protein level and prior episodes of SBP.

Identification of risk factors for SBP is important to develop optimally targeted safe and cost-effective strategies for its prevention. Improvements in survival are achieved with early diagnosis and prompt antibiotic treatment. Empirical antibiotics should be started immediately following the diagnosis of SBP and the first line antibiotic treatment is third-generation cephalosporins. The concomitant administration of albumin decreases the frequency of hepatorenal syndrome and improves survival.

Antibiotic prophylaxis should be used in cirrhotic patients hospitalized with an episode of gastrointestinal haemorrhage, ascites and a prior history of SBP. Patients with protein ascitic levels < 15 g/L and severe liver disease or renal impairment should be considered for long-term antibiotic prophylaxis. Patients who recover from SBP have to be considered for liver transplantation, since they have a poor long-term survival.

Footnotes

Supported by Study under the Scope of CIBERehd and IMIBIC-A02/C05

P- Reviewers Lonardo A, Huang GC S- Editor Song XX L- Editor Hughes D E- Editor Li JY

References

  • 1.Fernández J, Navasa M, Gómez J, Colmenero J, Vila J, Arroyo V, Rodés J. Bacterial infections in cirrhosis: epidemiological changes with invasive procedures and norfloxacin prophylaxis. Hepatology. 2002;35:140–148. doi: 10.1053/jhep.2002.30082. [DOI] [PubMed] [Google Scholar]
  • 2.Borzio M, Salerno F, Piantoni L, Cazzaniga M, Angeli P, Bissoli F, Boccia S, Colloredo-Mels G, Corigliano P, Fornaciari G, et al. Bacterial infection in patients with advanced cirrhosis: a multicentre prospective study. Dig Liver Dis. 2001;33:41–48. doi: 10.1016/s1590-8658(01)80134-1. [DOI] [PubMed] [Google Scholar]
  • 3.Wong F, Bernardi M, Balk R, Christman B, Moreau R, Garcia-Tsao G, Patch D, Soriano G, Hoefs J, Navasa M. Sepsis in cirrhosis: report on the 7th meeting of the International Ascites Club. Gut. 2005;54:718–725. doi: 10.1136/gut.2004.038679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Arvaniti V, D’Amico G, Fede G, Manousou P, Tsochatzis E, Pleguezuelo M, Burroughs AK. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology. 2010;139:1246–1256, 1256.e1-5. doi: 10.1053/j.gastro.2010.06.019. [DOI] [PubMed] [Google Scholar]
  • 5.Pinzello G, Simonetti RG, Craxì A, Di Piazza S, Spanò C, Pagliaro L. Spontaneous bacterial peritonitis: a prospective investigation in predominantly nonalcoholic cirrhotic patients. Hepatology. 1983;3:545–549. doi: 10.1002/hep.1840030411. [DOI] [PubMed] [Google Scholar]
  • 6.Taneja SK, Dhiman RK. Prevention and management of bacterial infections in cirrhosis. Int J Hepatol. 2011;2011:784540. doi: 10.4061/2011/784540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Rimola A, García-Tsao G, Navasa M, Piddock LJ, Planas R, Bernard B, Inadomi JM. Diagnosis, treatment and prophylaxis of spontaneous bacterial peritonitis: a consensus document. International Ascites Club. J Hepatol. 2000;32:142–153. doi: 10.1016/s0168-8278(00)80201-9. [DOI] [PubMed] [Google Scholar]
  • 8.Runyon BA. Management of adult patients with ascites due to cirrhosis: an update. Hepatology. 2009;49:2087–2107. doi: 10.1002/hep.22853. [DOI] [PubMed] [Google Scholar]
  • 9.European Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J Hepatol. 2010;53:397–417. doi: 10.1016/j.jhep.2010.05.004. [DOI] [PubMed] [Google Scholar]
  • 10.Merli M, Lucidi C, Giannelli V, Giusto M, Riggio O, Falcone M, Ridola L, Attili AF, Venditti M. Cirrhotic patients are at risk for health care-associated bacterial infections. Clin Gastroenterol Hepatol. 2010;8:979–985. doi: 10.1016/j.cgh.2010.06.024. [DOI] [PubMed] [Google Scholar]
  • 11.Fernández J, Gustot T. Management of bacterial infections in cirrhosis. J Hepatol. 2012;56 Suppl 1:S1–12. doi: 10.1016/S0168-8278(12)60002-6. [DOI] [PubMed] [Google Scholar]
  • 12.Rajkovic IA, Williams R. Abnormalities of neutrophil phagocytosis, intracellular killing and metabolic activity in alcoholic cirrhosis and hepatitis. Hepatology. 1986;6:252–262. doi: 10.1002/hep.1840060217. [DOI] [PubMed] [Google Scholar]
  • 13.Navasa M, Follo A, Filella X, Jiménez W, Francitorra A, Planas R, Rimola A, Arroyo V, Rodés J. Tumor necrosis factor and interleukin-6 in spontaneous bacterial peritonitis in cirrhosis: relationship with the development of renal impairment and mortality. Hepatology. 1998;27:1227–1232. doi: 10.1002/hep.510270507. [DOI] [PubMed] [Google Scholar]
  • 14.Foreman MG, Mannino DM, Moss M. Cirrhosis as a risk factor for sepsis and death: analysis of the National Hospital Discharge Survey. Chest. 2003;124:1016–1020. doi: 10.1378/chest.124.3.1016. [DOI] [PubMed] [Google Scholar]
  • 15.Preda CM, Ghita R, Ghita C, Mindru C, Vlaicu L, Andrei A, Andrei S, Diculescu M. A retrospective study of bacterial infections in cirrhosis. Maedica (Buchar) 2011;6:185–192. [PMC free article] [PubMed] [Google Scholar]
  • 16.Cohen MJ, Sahar T, Benenson S, Elinav E, Brezis M, Soares-Weiser K. Antibiotic prophylaxis for spontaneous bacterial peritonitis in cirrhotic patients with ascites, without gastro-intestinal bleeding. Cochrane Database Syst Rev. 2009;(2):CD004791. doi: 10.1002/14651858.CD004791.pub2. [DOI] [PubMed] [Google Scholar]
  • 17.Chinnock B, Afarian H, Minnigan H, Butler J, Hendey GW. Physician clinical impression does not rule out spontaneous bacterial peritonitis in patients undergoing emergency department paracentesis. Ann Emerg Med. 2008;52:268–273. doi: 10.1016/j.annemergmed.2008.02.016. [DOI] [PubMed] [Google Scholar]
  • 18.Wiest R, Krag A, Gerbes A. Spontaneous bacterial peritonitis: recent guidelines and beyond. Gut. 2012;61:297–310. doi: 10.1136/gutjnl-2011-300779. [DOI] [PubMed] [Google Scholar]
  • 19.Albillos A, Cuervas-Mons V, Millán I, Cantón T, Montes J, Barrios C, Garrido A, Escartín P. Ascitic fluid polymorphonuclear cell count and serum to ascites albumin gradient in the diagnosis of bacterial peritonitis. Gastroenterology. 1990;98:134–140. doi: 10.1016/0016-5085(90)91301-l. [DOI] [PubMed] [Google Scholar]
  • 20.Garcia-Tsao G, Conn HO, Lerner E. The diagnosis of bacterial peritonitis: comparison of pH, lactate concentration and leukocyte count. Hepatology. 1985;5:91–96. doi: 10.1002/hep.1840050119. [DOI] [PubMed] [Google Scholar]
  • 21.Stassen WN, McCullough AJ, Bacon BR, Gutnik SH, Wadiwala IM, McLaren C, Kalhan SC, Tavill AS. Immediate diagnostic criteria for bacterial infection of ascitic fluid. Evaluation of ascitic fluid polymorphonuclear leukocyte count, pH, and lactate concentration, alone and in combination. Gastroenterology. 1986;90:1247–1254. doi: 10.1016/0016-5085(86)90392-6. [DOI] [PubMed] [Google Scholar]
  • 22.Yang CY, Liaw YF, Chu CM, Sheen IS. White count, pH and lactate in ascites in the diagnosis of spontaneous bacterial peritonitis. Hepatology. 1985;5:85–90. doi: 10.1002/hep.1840050118. [DOI] [PubMed] [Google Scholar]
  • 23.Butani RC, Shaffer RT, Szyjkowski RD, Weeks BE, Speights LG, Kadakia SC. Rapid diagnosis of infected ascitic fluid using leukocyte esterase dipstick testing. Am J Gastroenterol. 2004;99:532–537. doi: 10.1111/j.1572-0241.2004.04084.x. [DOI] [PubMed] [Google Scholar]
  • 24.Castellote J, López C, Gornals J, Tremosa G, Fariña ER, Baliellas C, Domingo A, Xiol X. Rapid diagnosis of spontaneous bacterial peritonitis by use of reagent strips. Hepatology. 2003;37:893–896. doi: 10.1053/jhep.2003.50120. [DOI] [PubMed] [Google Scholar]
  • 25.Vanbiervliet G, Rakotoarisoa C, Filippi J, Guérin O, Calle G, Hastier P, Mariné-Barjoan E, Schneider S, Piche T, Broussard JF, et al. Diagnostic accuracy of a rapid urine-screening test (Multistix8SG) in cirrhotic patients with spontaneous bacterial peritonitis. Eur J Gastroenterol Hepatol. 2002;14:1257–1260. doi: 10.1097/00042737-200211000-00015. [DOI] [PubMed] [Google Scholar]
  • 26.Nousbaum JB, Cadranel JF, Nahon P, Khac EN, Moreau R, Thévenot T, Silvain C, Bureau C, Nouel O, Pilette C, Paupard T, Vanbiervliet G, Oberti F, Davion T, Jouannaud V, Roche B, Bernard PH, Beaulieu S, Danne O, Thabut D, Chagneau-Derrode C, de Lédinghen V, Mathurin P, Pauwels A, Bronowicki JP, Habersetzer F, Abergel A, Audigier JC, Sapey T, Grangé JD, Tran A. Diagnostic accuracy of the Multistix 8 SG reagent strip in diagnosis of spontaneous bacterial peritonitis. Hepatology. 2007;45:1275–1281. doi: 10.1002/hep.21588. [DOI] [PubMed] [Google Scholar]
  • 27.Parsi MA, Saadeh SN, Zein NN, Davis GL, Lopez R, Boone J, Lepe MR, Guo L, Ashfaq M, Klintmalm G, et al. Ascitic fluid lactoferrin for diagnosis of spontaneous bacterial peritonitis. Gastroenterology. 2008;135:803–807. doi: 10.1053/j.gastro.2008.05.045. [DOI] [PubMed] [Google Scholar]
  • 28.Soriano G, Castellote J, Alvarez C, Girbau A, Gordillo J, Baliellas C, Casas M, Pons C, Román EM, Maisterra S, et al. Secondary bacterial peritonitis in cirrhosis: a retrospective study of clinical and analytical characteristics, diagnosis and management. J Hepatol. 2010;52:39–44. doi: 10.1016/j.jhep.2009.10.012. [DOI] [PubMed] [Google Scholar]
  • 29.Fernández J, Navasa M, Planas R, Montoliu S, Monfort D, Soriano G, Vila C, Pardo A, Quintero E, Vargas V, et al. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology. 2007;133:818–824. doi: 10.1053/j.gastro.2007.06.065. [DOI] [PubMed] [Google Scholar]
  • 30.Wiest R, Schoelmerich J. Secondary peritonitis in cirrhosis: “oil in fire”. J Hepatol. 2010;52:7–9. doi: 10.1016/j.jhep.2009.10.022. [DOI] [PubMed] [Google Scholar]
  • 31.Yang YY, Lin HC. Bacterial infections in patients with cirrhosis. J Chin Med Assoc. 2005;68:447–451. doi: 10.1016/S1726-4901(09)70072-3. [DOI] [PubMed] [Google Scholar]
  • 32.Lipsky BA. Urinary tract infections in men. Epidemiology, pathophysiology, diagnosis, and treatment. Ann Intern Med. 1989;110:138–150. doi: 10.7326/0003-4819-110-2-138. [DOI] [PubMed] [Google Scholar]
  • 33.Caly WR, Strauss E. A prospective study of bacterial infections in patients with cirrhosis. J Hepatol. 1993;18:353–358. doi: 10.1016/s0168-8278(05)80280-6. [DOI] [PubMed] [Google Scholar]
  • 34.Guarner C, Runyon BA. Macrophage function in cirrhosis and the risk of bacterial infection. Hepatology. 1995;22:367–369. doi: 10.1002/hep.1840220149. [DOI] [PubMed] [Google Scholar]
  • 35.Westphal JF, Jehl F, Vetter D. Pharmacological, toxicologic, and microbiological considerations in the choice of initial antibiotic therapy for serious infections in patients with cirrhosis of the liver. Clin Infect Dis. 1994;18:324–335. doi: 10.1093/clinids/18.3.324. [DOI] [PubMed] [Google Scholar]
  • 36.Adams HG, Jordan C. Infections in the alcoholic. Med Clin North Am. 1984;68:179–200. doi: 10.1016/s0025-7125(16)31249-4. [DOI] [PubMed] [Google Scholar]
  • 37.Bradsher RW. Overwhelming pneumonia. Med Clin North Am. 1983;67:1233–1250. doi: 10.1016/s0025-7125(16)31151-8. [DOI] [PubMed] [Google Scholar]
  • 38.Lévy M, Dromer F, Brion N, Leturdu F, Carbon C. Community-acquired pneumonia. Importance of initial noninvasive bacteriologic and radiographic investigations. Chest. 1988;93:43–48. doi: 10.1378/chest.93.1.43. [DOI] [PubMed] [Google Scholar]
  • 39.Swartz ML, Pasternack MS. Cellulitis and superficial infections. Prin Pract Inf Dis. 1999;88:34–37. [Google Scholar]
  • 40.Felisart J, Rimola A, Arroyo V, Perez-Ayuso RM, Quintero E, Gines P, Rodes J. Cefotaxime is more effective than is ampicillin-tobramycin in cirrhotics with severe infections. Hepatology. 1985;5:457–462. doi: 10.1002/hep.1840050319. [DOI] [PubMed] [Google Scholar]
  • 41.Mercader J, Gomez J, Ruiz J, Garre MC, Valdes M. Use of ceftriaxone in the treatment of bacterial infections in cirrhotic patients. Chemotherapy. 1989;35 Suppl 2:23–26. doi: 10.1159/000238735. [DOI] [PubMed] [Google Scholar]
  • 42.Gómez-Jiménez J, Ribera E, Gasser I, Artaza MA, Del Valle O, Pahissa A, Martínez-Vázquez JM. Randomized trial comparing ceftriaxone with cefonicid for treatment of spontaneous bacterial peritonitis in cirrhotic patients. Antimicrob Agents Chemother. 1993;37:1587–1592. doi: 10.1128/aac.37.8.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Fernández J, Acevedo J, Castro M, Garcia O, de Lope CR, Roca D, Pavesi M, Sola E, Moreira L, Silva A, et al. Prevalence and risk factors of infections by multiresistant bacteria in cirrhosis: a prospective study. Hepatology. 2012;55:1551–1561. doi: 10.1002/hep.25532. [DOI] [PubMed] [Google Scholar]
  • 44.Cabrera J, Arroyo V, Ballesta AM, Rimola A, Gual J, Elena M, Rodes J. Aminoglycoside nephrotoxicity in cirrhosis. Value of urinary beta 2-microglobulin to discriminate functional renal failure from acute tubular damage. Gastroenterology. 1982;82:97–105. [PubMed] [Google Scholar]
  • 45.Ricart E, Soriano G, Novella MT, Ortiz J, Sàbat M, Kolle L, Sola-Vera J, Miñana J, Dedéu JM, Gómez C, et al. Amoxicillin-clavulanic acid versus cefotaxime in the therapy of bacterial infections in cirrhotic patients. J Hepatol. 2000;32:596–602. doi: 10.1016/s0168-8278(00)80221-4. [DOI] [PubMed] [Google Scholar]
  • 46.Follo A, Llovet JM, Navasa M, Planas R, Forns X, Francitorra A, Rimola A, Gassull MA, Arroyo V, Rodés J. Renal impairment after spontaneous bacterial peritonitis in cirrhosis: incidence, clinical course, predictive factors and prognosis. Hepatology. 1994;20:1495–1501. doi: 10.1002/hep.1840200619. [DOI] [PubMed] [Google Scholar]
  • 47.Hoefs JC, Canawati HN, Sapico FL, Hopkins RR, Weiner J, Montgomerie JZ. Spontaneous bacterial peritonitis. Hepatology. 1982;2:399–407. doi: 10.1002/hep.1840020402. [DOI] [PubMed] [Google Scholar]
  • 48.Singh N, Wagener MM, Gayowski T. Changing epidemiology and predictors of mortality in patients with spontaneous bacterial peritonitis at a liver transplant unit. Clin Microbiol Infect. 2003;9:531–537. doi: 10.1046/j.1469-0691.2003.00691.x. [DOI] [PubMed] [Google Scholar]
  • 49.Sort P, Navasa M, Arroyo V, Aldeguer X, Planas R, Ruiz-del-Arbol L, Castells L, Vargas V, Soriano G, Guevara M, et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med. 1999;341:403–409. doi: 10.1056/NEJM199908053410603. [DOI] [PubMed] [Google Scholar]
  • 50.Heo J, Seo YS, Yim HJ, Hahn T, Park SH, Ahn SH, Park JY, Park JY, Kim MY, Park SK, et al. Clinical features and prognosis of spontaneous bacterial peritonitis in korean patients with liver cirrhosis: a multicenter retrospective study. Gut Liver. 2009;3:197–204. doi: 10.5009/gnl.2009.3.3.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Angeloni S, Leboffe C, Parente A, Venditti M, Giordano A, Merli M, Riggio O. Efficacy of current guidelines for the treatment of spontaneous bacterial peritonitis in the clinical practice. World J Gastroenterol. 2008;14:2757–2762. doi: 10.3748/wjg.14.2757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Piroth L, Pechinot A, Minello A, Jaulhac B, Patry I, Hadou T, Hansmann Y, Rabaud C, Chavanet P, Neuwirth C. Bacterial epidemiology and antimicrobial resistance in ascitic fluid: a 2-year retrospective study. Scand J Infect Dis. 2009;41:847–851. doi: 10.3109/00365540903244535. [DOI] [PubMed] [Google Scholar]
  • 53.Cheong HS, Kang CI, Lee JA, Moon SY, Joung MK, Chung DR, Koh KC, Lee NY, Song JH, Peck KR. Clinical significance and outcome of nosocomial acquisition of spontaneous bacterial peritonitis in patients with liver cirrhosis. Clin Infect Dis. 2009;48:1230–1236. doi: 10.1086/597585. [DOI] [PubMed] [Google Scholar]
  • 54.Campillo B, Richardet JP, Kheo T, Dupeyron C. Nosocomial spontaneous bacterial peritonitis and bacteremia in cirrhotic patients: impact of isolate type on prognosis and characteristics of infection. Clin Infect Dis. 2002;35:1–10. doi: 10.1086/340617. [DOI] [PubMed] [Google Scholar]
  • 55.Bert F, Andreu M, Durand F, Degos F, Galdbart JO, Moreau R, Branger C, Lambert-Zechovsky N, Valla D. Nosocomial and community-acquired spontaneous bacterial peritonitis: comparative microbiology and therapeutic implications. Eur J Clin Microbiol Infect Dis. 2003;22:10–15. doi: 10.1007/s10096-002-0840-z. [DOI] [PubMed] [Google Scholar]
  • 56.Song JY, Jung SJ, Park CW, Sohn JW, Kim WJ, Kim MJ, Cheong HJ. Prognostic significance of infection acquisition sites in spontaneous bacterial peritonitis: nosocomial versus community acquired. J Korean Med Sci. 2006;21:666–671. doi: 10.3346/jkms.2006.21.4.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Umgelter A, Reindl W, Miedaner M, Schmid RM, Huber W. Failure of current antibiotic first-line regimens and mortality in hospitalized patients with spontaneous bacterial peritonitis. Infection. 2009;37:2–8. doi: 10.1007/s15010-008-8060-9. [DOI] [PubMed] [Google Scholar]
  • 58.Yahav D, Lador A, Paul M, Leibovici L. Efficacy and safety of tigecycline: a systematic review and meta-analysis. J Antimicrob Chemother. 2011;66:1963–1971. doi: 10.1093/jac/dkr242. [DOI] [PubMed] [Google Scholar]
  • 59.Bernard B, Cadranel JF, Valla D, Escolano S, Jarlier V, Opolon P. Prognostic significance of bacterial infection in bleeding cirrhotic patients: a prospective study. Gastroenterology. 1995;108:1828–1834. doi: 10.1016/0016-5085(95)90146-9. [DOI] [PubMed] [Google Scholar]
  • 60.Goulis J, Armonis A, Patch D, Sabin C, Greenslade L, Burroughs AK. Bacterial infection is independently associated with failure to control bleeding in cirrhotic patients with gastrointestinal hemorrhage. Hepatology. 1998;27:1207–1212. doi: 10.1002/hep.510270504. [DOI] [PubMed] [Google Scholar]
  • 61.Goulis J, Patch D, Burroughs AK. Bacterial infection in the pathogenesis of variceal bleeding. Lancet. 1999;353:139–142. doi: 10.1016/S0140-6736(98)06020-6. [DOI] [PubMed] [Google Scholar]
  • 62.Chavez-Tapia NC, Barrientos-Gutierrez T, Tellez-Avila FI, Soares-Weiser K, Uribe M. Antibiotic prophylaxis for cirrhotic patients with upper gastrointestinal bleeding. Cochrane Database Syst Rev. 2010;(9):CD002907. doi: 10.1002/14651858.CD002907.pub2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Bernard B, Grangé JD, Khac EN, Amiot X, Opolon P, Poynard T. Antibiotic prophylaxis for the prevention of bacterial infections in cirrhotic patients with gastrointestinal bleeding: a meta-analysis. Hepatology. 1999;29:1655–1661. doi: 10.1002/hep.510290608. [DOI] [PubMed] [Google Scholar]
  • 64.Chavez-Tapia NC, Barrientos-Gutierrez T, Tellez-Avila F, Soares-Weiser K, Mendez-Sanchez N, Gluud C, Uribe M. Meta-analysis: antibiotic prophylaxis for cirrhotic patients with upper gastrointestinal bleeding - an updated Cochrane review. Aliment Pharmacol Ther. 2011;34:509–518. doi: 10.1111/j.1365-2036.2011.04746.x. [DOI] [PubMed] [Google Scholar]
  • 65.Hou MC, Lin HC, Liu TT, Kuo BI, Lee FY, Chang FY, Lee SD. Antibiotic prophylaxis after endoscopic therapy prevents rebleeding in acute variceal hemorrhage: a randomized trial. Hepatology. 2004;39:746–753. doi: 10.1002/hep.20126. [DOI] [PubMed] [Google Scholar]
  • 66.Fernández J, Ruiz del Arbol L, Gómez C, Durandez R, Serradilla R, Guarner C, Planas R, Arroyo V, Navasa M. Norfloxacin vs ceftriaxone in the prophylaxis of infections in patients with advanced cirrhosis and hemorrhage. Gastroenterology. 2006;131:1049–1056; quiz 1285. doi: 10.1053/j.gastro.2006.07.010. [DOI] [PubMed] [Google Scholar]
  • 67.de Franchis R. Revising consensus in portal hypertension: report of the Baveno V consensus workshop on methodology of diagnosis and therapy in portal hypertension. J Hepatol. 2010;53:762–768. doi: 10.1016/j.jhep.2010.06.004. [DOI] [PubMed] [Google Scholar]
  • 68.Segarra-Newnham M, Henneman A. Antibiotic prophylaxis for prevention of spontaneous bacterial peritonitis in patients without gastrointestinal bleeding. Ann Pharmacother. 2010;44:1946–1954. doi: 10.1345/aph.1P317. [DOI] [PubMed] [Google Scholar]
  • 69.Loomba R, Wesley R, Bain A, Csako G, Pucino F. Role of fluoroquinolones in the primary prophylaxis of spontaneous bacterial peritonitis: meta-analysis. Clin Gastroenterol Hepatol. 2009;7:487–493. doi: 10.1016/j.cgh.2008.12.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Alvarez RF, Mattos AA, Corrêa EB, Cotrim HP, Nascimento TV. Trimethoprim-sulfamethoxazole versus norfloxacin in the prophylaxis of spontaneous bacterial peritonitis in cirrhosis. Arq Gastroenterol. 2005;42:256–262. doi: 10.1590/s0004-28032005000400012. [DOI] [PubMed] [Google Scholar]
  • 71.Rolachon A, Cordier L, Bacq Y, Nousbaum JB, Franza A, Paris JC, Fratte S, Bohn B, Kitmacher P, Stahl JP. Ciprofloxacin and long-term prevention of spontaneous bacterial peritonitis: results of a prospective controlled trial. Hepatology. 1995;22:1171–1174. doi: 10.1016/0270-9139(95)90626-6. [DOI] [PubMed] [Google Scholar]
  • 72.Terg R, Fassio E, Guevara M, Cartier M, Longo C, Lucero R, Landeira C, Romero G, Dominguez N, Muñoz A, et al. Ciprofloxacin in primary prophylaxis of spontaneous bacterial peritonitis: a randomized, placebo-controlled study. J Hepatol. 2008;48:774–779. doi: 10.1016/j.jhep.2008.01.024. [DOI] [PubMed] [Google Scholar]
  • 73.Saab S, Hernandez JC, Chi AC, Tong MJ. Oral antibiotic prophylaxis reduces spontaneous bacterial peritonitis occurrence and improves short-term survival in cirrhosis: a meta-analysis. Am J Gastroenterol. 2009;104:993–1001; quiz 1002. doi: 10.1038/ajg.2009.3. [DOI] [PubMed] [Google Scholar]
  • 74.Grangé JD, Roulot D, Pelletier G, Pariente EA, Denis J, Ink O, Blanc P, Richardet JP, Vinel JP, Delisle F, et al. Norfloxacin primary prophylaxis of bacterial infections in cirrhotic patients with ascites: a double-blind randomized trial. J Hepatol. 1998;29:430–436. doi: 10.1016/s0168-8278(98)80061-5. [DOI] [PubMed] [Google Scholar]
  • 75.Rimola A, Navasa M. Infections in liver disease. Oxford Textbook of Clinical Hepatology. 2nd ed. 1999. pp. 1861–1876. [Google Scholar]
  • 76.Ginés P, Rimola A, Planas R, Vargas V, Marco F, Almela M, Forné M, Miranda ML, Llach J, Salmerón JM. Norfloxacin prevents spontaneous bacterial peritonitis recurrence in cirrhosis: results of a double-blind, placebo-controlled trial. Hepatology. 1990;12:716–724. doi: 10.1002/hep.1840120416. [DOI] [PubMed] [Google Scholar]
  • 77.Inadomi J, Sonnenberg A. Cost-analysis of prophylactic antibiotics in spontaneous bacterial peritonitis. Gastroenterology. 1997;113:1289–1294. doi: 10.1053/gast.1997.v113.pm9322524. [DOI] [PubMed] [Google Scholar]
  • 78.Singh N, Gayowski T, Yu VL, Wagener MM. Trimethoprim-sulfamethoxazole for the prevention of spontaneous bacterial peritonitis in cirrhosis: a randomized trial. Ann Intern Med. 1995;122:595–598. doi: 10.7326/0003-4819-122-8-199504150-00007. [DOI] [PubMed] [Google Scholar]
  • 79.Cereto F, Herranz X, Moreno E, Andreu A, Vergara M, Fontanals D, Roget M, Simó M, González A, Prats G, et al. Role of host and bacterial virulence factors in Escherichia coli spontaneous bacterial peritonitis. Eur J Gastroenterol Hepatol. 2008;20:924–929. doi: 10.1097/MEG.0b013e3282fc7390. [DOI] [PubMed] [Google Scholar]
  • 80.Cereto F, Molina I, González A, Del Valle O, Esteban R, Guardia J, Genescà J. Role of immunosuppression in the development of quinolone-resistant Escherichia coli spontaneous bacterial peritonitis and in the mortality of E. coli spontaneous bacterial peritonitis. Aliment Pharmacol Ther. 2003;17:695–701. doi: 10.1046/j.1365-2036.2003.01491.x. [DOI] [PubMed] [Google Scholar]
  • 81.Nunnari G, Celesia BM, Bellissimo F, Tosto S, La Rocca M, Giarratana F, Benanti F, Caltabiano E, Russo R, Cacopardo B. Trimethoprim-sulfamethoxazole-associated severe hypoglycaemia: a sulfonylurea-like effect. Eur Rev Med Pharmacol Sci. 2010;14:1015–1018. [PubMed] [Google Scholar]
  • 82.Adawi D, Kasravi FB, Molin G, Jeppsson B. Effect of Lactobacillus supplementation with and without arginine on liver damage and bacterial translocation in an acute liver injury model in the rat. Hepatology. 1997;25:642–647. doi: 10.1002/hep.510250325. [DOI] [PubMed] [Google Scholar]
  • 83.Loguercio C, Federico A, Tuccillo C, Terracciano F, D’Auria MV, De Simone C, Del Vecchio Blanco C. Beneficial effects of a probiotic VSL#3 on parameters of liver dysfunction in chronic liver diseases. J Clin Gastroenterol. 2005;39:540–543. doi: 10.1097/01.mcg.0000165671.25272.0f. [DOI] [PubMed] [Google Scholar]
  • 84.Stadlbauer V, Mookerjee RP, Hodges S, Wright GA, Davies NA, Jalan R. Effect of probiotic treatment on deranged neutrophil function and cytokine responses in patients with compensated alcoholic cirrhosis. J Hepatol. 2008;48:945–951. doi: 10.1016/j.jhep.2008.02.015. [DOI] [PubMed] [Google Scholar]
  • 85.Bauer TM, Fernández J, Navasa M, Vila J, Rodés J. Failure of Lactobacillus spp. to prevent bacterial translocation in a rat model of experimental cirrhosis. J Hepatol. 2002;36:501–506. doi: 10.1016/s0168-8278(02)00003-x. [DOI] [PubMed] [Google Scholar]
  • 86.Wiest R, Chen F, Cadelina G, Groszmann RJ, Garcia-Tsao G. Effect of Lactobacillus-fermented diets on bacterial translocation and intestinal flora in experimental prehepatic portal hypertension. Dig Dis Sci. 2003;48:1136–1141. doi: 10.1023/a:1023729115659. [DOI] [PubMed] [Google Scholar]
  • 87.Bauer TM, Steinbrückner B, Brinkmann FE, Ditzen AK, Schwacha H, Aponte JJ, Pelz K, Kist M, Blum HE. Small intestinal bacterial overgrowth in patients with cirrhosis: prevalence and relation with spontaneous bacterial peritonitis. Am J Gastroenterol. 2001;96:2962–2967. doi: 10.1111/j.1572-0241.2001.04668.x. [DOI] [PubMed] [Google Scholar]
  • 88.Wiest R, Garcia-Tsao G. Bacterial translocation (BT) in cirrhosis. Hepatology. 2005;41:422–433. doi: 10.1002/hep.20632. [DOI] [PubMed] [Google Scholar]
  • 89.Ersöz G, Aydin A, Erdem S, Yüksel D, Akarca U, Kumanlioglu K. Intestinal permeability in liver cirrhosis. Eur J Gastroenterol Hepatol. 1999;11:409–412. doi: 10.1097/00042737-199904000-00009. [DOI] [PubMed] [Google Scholar]
  • 90.Scarpellini E, Valenza V, Gabrielli M, Lauritano EC, Perotti G, Merra G, Dal Lago A, Ojetti V, Ainora ME, Santoro M, et al. Intestinal permeability in cirrhotic patients with and without spontaneous bacterial peritonitis: is the ring closed? Am J Gastroenterol. 2010;105:323–327. doi: 10.1038/ajg.2009.558. [DOI] [PubMed] [Google Scholar]
  • 91.Cariello R, Federico A, Sapone A, Tuccillo C, Scialdone VR, Tiso A, Miranda A, Portincasa P, Carbonara V, Palasciano G, et al. Intestinal permeability in patients with chronic liver diseases: Its relationship with the aetiology and the entity of liver damage. Dig Liver Dis. 2010;42:200–204. doi: 10.1016/j.dld.2009.05.001. [DOI] [PubMed] [Google Scholar]
  • 92.Lodato F, Azzaroli F, Di Girolamo M, Feletti V, Cecinato P, Lisotti A, Festi D, Roda E, Mazzella G. Proton pump inhibitors in cirrhosis: tradition or evidence based practice? World J Gastroenterol. 2008;14:2980–2985. doi: 10.3748/wjg.14.2980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Trikudanathan G, Israel J, Cappa J, O’Sullivan DM. Association between proton pump inhibitors and spontaneous bacterial peritonitis in cirrhotic patients - a systematic review and meta-analysis. Int J Clin Pract. 2011;65:674–678. doi: 10.1111/j.1742-1241.2011.02650.x. [DOI] [PubMed] [Google Scholar]
  • 94.Bajaj JS, Zadvornova Y, Heuman DM, Hafeezullah M, Hoffmann RG, Sanyal AJ, Saeian K. Association of proton pump inhibitor therapy with spontaneous bacterial peritonitis in cirrhotic patients with ascites. Am J Gastroenterol. 2009;104:1130–1134. doi: 10.1038/ajg.2009.80. [DOI] [PubMed] [Google Scholar]
  • 95.Bulsiewicz WJ, Scherer JR, Feinglass JM, Howden CW, Flamm SL. Proton pump inhibitor (PPI) use is independently associated with spontaneous bacterial peritonitis (SBP) in cirrhotics with ascites. Gastroenterology. 2009;136:A–11. [Google Scholar]
  • 96.Goel GA, Deshpande A, Lopez R, Hall GS, van Duin D, Carey WD. Proton pump inhibitor (PPI) use is associated with spontaneous bacterial peritonitis (SBP) in cirrhosis. Gastroenterology. 2010;138:S–816. [Google Scholar]
  • 97.Campbell MS, Obstein K, Reddy KR, Yang YX. Association between proton pump inhibitor use and spontaneous bacterial peritonitis. Dig Dis Sci. 2008;53:394–398. doi: 10.1007/s10620-007-9899-9. [DOI] [PubMed] [Google Scholar]
  • 98.Choi EJ, Lee HJ, Kim KO, Lee SH, Eun JR, Jang BI, Kim TN. Association between acid suppressive therapy and spontaneous bacterial peritonitis in cirrhotic patients with ascites. Scand J Gastroenterol. 2011;46:616–620. doi: 10.3109/00365521.2011.551891. [DOI] [PubMed] [Google Scholar]
  • 99.van Vlerken LG, Huisman EJ, van Hoek B, Renooij W, de Rooij FW, Siersema PD, van Erpecum KJ. Bacterial infections in cirrhosis: role of proton pump inhibitors and intestinal permeability. Eur J Clin Invest. 2012;42:760–767. doi: 10.1111/j.1365-2362.2011.02643.x. [DOI] [PubMed] [Google Scholar]
  • 100.Bajaj JS, Ananthakrishnan AN, Hafeezullah M, Zadvornova Y, Dye A, McGinley EL, Saeian K, Heuman D, Sanyal AJ, Hoffmann RG. Clostridium difficile is associated with poor outcomes in patients with cirrhosis: A national and tertiary center perspective. Am J Gastroenterol. 2010;105:106–113. doi: 10.1038/ajg.2009.615. [DOI] [PubMed] [Google Scholar]
  • 101.Pohl JF, Patel R, Zobell JT, Lin E, Korgenski EK, Crowell K, Mackay MW, Richman A, Larsen C, Chatfield BA. Clostridium difficile Infection and Proton Pump Inhibitor Use in Hospitalized Pediatric Cystic Fibrosis Patients. Gastroenterol Res Pract. 2011;2011:345012. doi: 10.1155/2011/345012. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from World Journal of Hepatology are provided here courtesy of Baishideng Publishing Group Inc

RESOURCES