Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1972 May;9(5):879–882. doi: 10.1128/jvi.9.5.879-882.1972

Release of Rubella Virus Ribonucleic Acid from Ribonucleoprotein by Polyanions

Tapani Hovi 1
PMCID: PMC356387  PMID: 5025496

Abstract

Rubella virus ribonucleoprotein was accessible to pancreatic ribonuclease, Pronase, and certain polyanions. Most of the ribonucleic acid (RNA) label was made acid-soluble by ribonuclease, whereas Pronase and the polyanions liberated 40S RNA from the ribonucleoprotein.

Full text

PDF
879

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burge B. W., Pfefferkorn E. R. Functional defects of temperature-sensitive mutants of Sindbis virus. J Mol Biol. 1968 Jul 14;35(1):193–205. doi: 10.1016/s0022-2836(68)80047-6. [DOI] [PubMed] [Google Scholar]
  2. GODAL H. C. Precipitation of human fibrinogen with heparin. Scalpel (Brux) 1960;12:56–65. [PubMed] [Google Scholar]
  3. Goldstein E. A., Pons M. W. The effect of polyvinylsulfate on the ribonucleoprotein of influenza virus. Virology. 1970 Jun;41(2):382–384. doi: 10.1016/0042-6822(70)90093-0. [DOI] [PubMed] [Google Scholar]
  4. Holmes I. H., Wark M. C., Warburton M. F. Is rubella an arbovirus? II. Ultrastructural morphology and development. Virology. 1969 Jan;37(1):15–25. doi: 10.1016/0042-6822(69)90301-8. [DOI] [PubMed] [Google Scholar]
  5. Hovi T., Vaheri A. Infectivity and some physicochemical characteristics of rubella virus ribonucleic acid. Virology. 1970 Sep;42(1):1–8. doi: 10.1016/0042-6822(70)90232-1. [DOI] [PubMed] [Google Scholar]
  6. Hovi T., Vaheri A. Rubella virus-specific ribonucleic acids in infected BHK21 cells. J Gen Virol. 1970 Jan;6(1):77–83. doi: 10.1099/0022-1317-6-1-77. [DOI] [PubMed] [Google Scholar]
  7. Käriäinen L., Söderlund H. Properties of Semliki Forest virus nucleocapsid. 1. Sensitivity to pancreatic ribonuclease. Virology. 1971 Jan;43(1):291–299. doi: 10.1016/0042-6822(71)90246-7. [DOI] [PubMed] [Google Scholar]
  8. Mettler N. E., Petrelli R. L., Casals J. Absence of antigenic cross-reactions between rubella virus and arbouviruses. Virology. 1968 Nov;36(3):503–504. doi: 10.1016/0042-6822(68)90175-x. [DOI] [PubMed] [Google Scholar]
  9. Pons M. W., Schulze I. T., Hirst G. K., Hauser R. Isolation and characterization of the ribonucleoprotein of influenza virus. Virology. 1969 Oct;39(2):250–259. doi: 10.1016/0042-6822(69)90045-2. [DOI] [PubMed] [Google Scholar]
  10. TUNIS M., REGELSON W. A comparative study of the inhibiting effects of anionic polyelectrolytes on deoxyribonucleases. Arch Biochem Biophys. 1963 Jun;101:448–455. doi: 10.1016/0003-9861(63)90502-2. [DOI] [PubMed] [Google Scholar]
  11. VAHERI A. HEPARIN AND RELATED POLYIONIC SUBSTANCES AS VIRUS INHIBITORS. Acta Pathol Microbiol Scand Suppl. 1964:SUPPL 171–17298. [PubMed] [Google Scholar]
  12. Vaheri A., Hovi T. Structural proteins and subunits of rubella virus. J Virol. 1972 Jan;9(1):10–16. doi: 10.1128/jvi.9.1.10-16.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Vaheri A., Vesikari T. Small size rubella virus antigens and soluble immune complexes: analysis by the platelet aggregation technique. Arch Gesamte Virusforsch. 1971;35(1):10–24. doi: 10.1007/BF01249748. [DOI] [PubMed] [Google Scholar]
  14. von Bonsdorff C. H., Vaheri A. Growth of rubella virus in BHK21 cells: electron microscopy of morphogenesis. J Gen Virol. 1969 Jul;5(1):47–51. doi: 10.1099/0022-1317-5-1-47. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES