Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1972 Nov;10(5):937–942. doi: 10.1128/jvi.10.5.937-942.1972

Methylation Pattern of Lambda Deoxyribonucleic Acid

Cecilia Hidalgo a,1, Howard A Nash a
PMCID: PMC356562  PMID: 4564587

Abstract

Deoxyribonucleic acid (DNA) extracted from phage λ grown on Escherichia coli K-12 strain W4032 had 113 ± 10 5-methylcytosine residues and 215 ± 20 6-methyl adenine residues per genome, as determined by three independent methods. These methylated nucleotides were distributed equally among the two strands of λ DNA. Shearing of double-stranded DNA to half-length fragments revealed a slight deficiency of 5-methyl cytosine in the 55% guanine plus cytosine half. Shearing the DNA to fragments of smaller length showed that the distribution of methylated nucleotides along the double helix was uniform with the exception of an undermethylated fragment arising from the center of the λ DNA molecule. The implication of these results for the function of methylated nucleotides in the λ DNA molecule is discussed.

Full text

PDF
937

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arber W., Linn S. DNA modification and restriction. Annu Rev Biochem. 1969;38:467–500. doi: 10.1146/annurev.bi.38.070169.002343. [DOI] [PubMed] [Google Scholar]
  2. BURGI E., HERSHEY A. D. Sedimentation rate as a measure of molecular weight of DNA. Biophys J. 1963 Jul;3:309–321. doi: 10.1016/s0006-3495(63)86823-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. COOK A., LEDERBERG J. Recombination studies of lactose nonfermenting mutants of Escherichia coli K-12. Genetics. 1962 Oct;47:1335–1353. doi: 10.1093/genetics/47.10.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Doskocil J., Sormová Z. The sequences of 5-methylcytosine in the DNA of Escherichia coli. Biochem Biophys Res Commun. 1965 Jul 26;20(3):334–339. doi: 10.1016/0006-291x(65)90369-4. [DOI] [PubMed] [Google Scholar]
  5. Gough M., Lederberg S. Methylated bases in the host-modified deoxyribonucleic acid of Escherichia coli and bacteriophage lambda. J Bacteriol. 1966 Apr;91(4):1460–1468. doi: 10.1128/jb.91.4.1460-1468.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ihler G., Kawai Y. Alternate fates of the complementary strands of lambda DNA after infection of Escherichia coli. J Mol Biol. 1971 Oct 28;61(2):311–328. doi: 10.1016/0022-2836(71)90382-2. [DOI] [PubMed] [Google Scholar]
  7. LEDINKO N. OCCURRENCE OF 5-METHYLDEOXYCYTIDYLATE IN THE DNA OF PHAGE LAMBDA. J Mol Biol. 1964 Sep;9:834–835. doi: 10.1016/s0022-2836(64)80191-1. [DOI] [PubMed] [Google Scholar]
  8. Skalka A., Burgi E., Hershey A. D. Segmental distribution of nucleotides in the DNA of bacteriophage lambda. J Mol Biol. 1968 May 28;34(1):1–16. doi: 10.1016/0022-2836(68)90230-1. [DOI] [PubMed] [Google Scholar]
  9. Smith H. O., Wilcox K. W. A restriction enzyme from Hemophilus influenzae. I. Purification and general properties. J Mol Biol. 1970 Jul 28;51(2):379–391. doi: 10.1016/0022-2836(70)90149-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES