Abstract
The last genetic markers to be transferred during bacteriophage SP82G infection have a higher sensitivity to the decay of incorporated radioactive phosphorous (32P) than those which are located on the proximal end of the genome. If 32P decay is permitted to take place after DNA transfer is complete (in frozen infective centers) and in the absence of DNA replication, no dependence of marker sensitivity on map position is observed. These results indicate that the decay of incorporated 32P leads to damages that prevent the efficient transfer of portions of the genome distal to the lesion. At 4 C, failure to transfer some portion of the genome occurs in 49% of all lethal events. Even though damages that prevent transfer of the genome are in themselves lethal, they do not prevent rescue of genetic markers on portions of the genome that are transferred. The portion of the genome that is transferred, is transferred at the same rate as an undamaged genome. We interpret these results to mean that double-strand breaks in the DNA are the lesions that prevent distal transfer and that single-strand breaks have little or no effect on the transfer of the bacteriophage SP82G genome.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alegria A. H., Kahan F. M., Marmur J. A new assay for phage hydroxymethylases and its use in Bacillus subtilis transfection. Biochemistry. 1968 Sep;7(9):3179–3186. doi: 10.1021/bi00849a021. [DOI] [PubMed] [Google Scholar]
- Coquerelle T., Hagen U. Loss of adsorption and injection abilities in -irradiated phage T1. Int J Radiat Biol Relat Stud Phys Chem Med. 1972 Jan;21(1):31–41. doi: 10.1080/09553007214550031. [DOI] [PubMed] [Google Scholar]
- DAVISON P. F., FREIFELDER D., HEDE R., LEVINTHAL C. The structural unity of the DNA of T2 bacteriophage. Proc Natl Acad Sci U S A. 1961 Aug;47:1123–1129. doi: 10.1073/pnas.47.8.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREEN D. M. INFECTIVITY OF DNA ISOLATED FROM BACILLUS SUBTILIS BACTERIOPHAGE, SP82. J Mol Biol. 1964 Dec;10:438–451. doi: 10.1016/s0022-2836(64)80065-6. [DOI] [PubMed] [Google Scholar]
- Green D. M., Laman D. Organization of gene function in Bacillus subtilis bacteriophage SP82G. J Virol. 1972 Jun;9(6):1033–1046. doi: 10.1128/jvi.9.6.1033-1046.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARM W. Multiplicity reactivation, marker rescue, and genetic recombination in phage T4 following x-ray inactivation. Virology. 1958 Apr;5(2):337–361. doi: 10.1016/0042-6822(58)90027-8. [DOI] [PubMed] [Google Scholar]
- HARRIMAN P. D., STENT G. S. THE EFFECT OF RADIOPHOSPHORUS DECAY ON CISTRON FUNCTION IN BACTERIOPHAGE T4. I. LONG-RANGE AND SHORT-RANGE HITS. J Mol Biol. 1964 Dec;10:488–507. doi: 10.1016/s0022-2836(64)80068-1. [DOI] [PubMed] [Google Scholar]
- HERSHEY A. D., KAMEN M. D., KENNEDY J. W., GEST H. The mortality of bacteriophage containing assimilated radioactive phosphorus. J Gen Physiol. 1951 Jan;34(3):305–319. doi: 10.1085/jgp.34.3.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kahan E. A genetic study of temperature-sensitive mutants of the subtilis phage SP82. Virology. 1966 Dec;30(4):650–660. doi: 10.1016/0042-6822(66)90170-x. [DOI] [PubMed] [Google Scholar]
- McAllister W. T. Bacteriophage infection: which end of the SP82G genome goes in first? J Virol. 1970 Feb;5(2):194–198. doi: 10.1128/jvi.5.2.194-198.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenthal P. N., Fox M. S. Effects of disintegration of incorporated 3H and 32P on the physical and biological properties of DNA. J Mol Biol. 1970 Dec 28;54(3):441–463. doi: 10.1016/0022-2836(70)90120-8. [DOI] [PubMed] [Google Scholar]
- STAHL F. W. The effects of the decay of incorporated radioactive phosphorus on the genome of bacteriophage T4. Virology. 1956 Apr;2(2):206–234. doi: 10.1016/0042-6822(56)90018-6. [DOI] [PubMed] [Google Scholar]
- STENT G. S., FUERST C. R. Inactivation of bacteriophages by decay of incorporated radioactive phosphorus. J Gen Physiol. 1955 Mar 20;38(4):441–458. doi: 10.1085/jgp.38.4.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STENT G. S. Mating in the reproduction of bacterial viruses. Adv Virus Res. 1958;5:95–149. doi: 10.1016/s0065-3527(08)60672-7. [DOI] [PubMed] [Google Scholar]
- Sharp J. D., Freifelder D. Interruption of DNA injection by x-irradiation of phage lambda. Virology. 1971 Jan;43(1):166–175. doi: 10.1016/0042-6822(71)90234-0. [DOI] [PubMed] [Google Scholar]
- Stent G. S. Cross Reactivation of Genetic Loci of T2 Bacteriophage after Decay of Incorporated Radioactive Phosphorus. Proc Natl Acad Sci U S A. 1953 Dec;39(12):1234–1241. doi: 10.1073/pnas.39.12.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- THOMAS C. A., Jr The release and stability of the large subunit of DNA from T2 and T4 bacteriophage. J Gen Physiol. 1959 Jan 20;42(3):503–523. doi: 10.1085/jgp.42.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomizawa J., Ogawa H. Breakage of polynucleotide strands by disintegration of radiophosphorus atoms in DNA molecules and their repair. II. Simultaneous breakage of both strands. J Mol Biol. 1967 Nov 28;30(1):7–15. doi: 10.1016/0022-2836(67)90239-2. [DOI] [PubMed] [Google Scholar]
