Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1973 Oct;12(4):775–792. doi: 10.1128/jvi.12.4.775-792.1973

SP62, a Viable Mutant of Bacteriophage T4D Defective in Regulation of Phage Enzyme Synthesis

John S Wiberg *, Steven Mendelsohn *, Virginia Warner *,1, Kathleen Hercules *, Cynthia Aldrich *, Judith L Munro *,2
PMCID: PMC356696  PMID: 4359953

Abstract

SP62 is a mutant of bacteriophage T4D that was discovered because it produces fewer phage than the wild type in the presence of 5-fluorodeoxyuridine. In the absence of phage DNA synthesis, SP62 solubilizes host DNA slower than normal; this may explain the sensitivity to 5-fluorodeoxyuridine. In Escherichia coli B at 37 C in the absence of drugs, SP62 makes DNA at a normal rate and the kinetics of appearance of phage are nearly normal. Under the same conditions, SP62 produces T4 lysozyme (gene e) at a normal rate until 20 min, but then produces it at twice the normal rate until at least 60 min. It has long been known that, when T4 DNA synthesis is blocked (DNA state) in an otherwise normal infection, the synthesis of a number of early enzymes continues beyond the shutoff time of about 12 min seen in the DNA+ state, but still stops at about 20 min. We have termed the 12-min shutoff event S1 and the 20-min shutoff event S2. We show here that, in the DNA+ state, SP62 makes four early enzymes normally, i.e., S1 occurs. However, in the DNA state (where S1 is missing), SP62 continues to make dCTPase (gene 56), dCMP hydroxymethylase (gene 42), and deoxynucleotide kinase (gene 1) for at least an hour; this results in production of up to 13 times the normal level of dCTPase at 60 min after infection, or 6 times the DNA level. We conclude that SP62 is defective in the second shutoff mechanism, S2, for these three enzymes. In contrast, SP62 causes premature cessation of dTMP synthetase production in the DNA state; the result is a twofold underproduction of dTMP synthetase. Autoradiograms of pulse-labeled proteins separated by slab-gel electrophoresis in the presence of sodium dodecyl sulfate show that a number of other T4 early proteins, including the products of genes 45, 46, and rIIA, are synthesized longer than normal by SP62 in the DNA state. Few late proteins are made in the DNA state, but in autoradiograms examining the DNA+ state there is little or no effect of the SP62 mutation on the synthesis of T4 late or early proteins. Circumstantial evidence is presented favoring a role for the gene of SP62 in translation of certain mRNAs. At very high temperatures (above 43 C) in the absence of drugs, phage production, but not DNA synthesis, is much reduced in SP62 infections relative to wild-type T4 infections; this temperature sensitivity is greater on E. coli CR63 than on E. coli B. This property has facilitated recognition of the SP62 genotype and aided in complementation testing and genetic mapping. A later publication will provide evidence that SP62 defines a new T4 gene named regA, which maps between genes 43 and 62.

Full text

PDF
775

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adesnik M., Levinthal C. RNA metabolism in T4-infected Escherichia coli. J Mol Biol. 1970 Mar 14;48(2):187–208. doi: 10.1016/0022-2836(70)90156-7. [DOI] [PubMed] [Google Scholar]
  2. Baldi M. I., Haselkorn R. Ribosome-bound messenger RNA in T4-infected bacteria. J Mol Biol. 1967 Jul 14;27(1):193–195. doi: 10.1016/0022-2836(67)90360-9. [DOI] [PubMed] [Google Scholar]
  3. Barry J., Alberts B. In vitro complementation as an assay for new proteins required for bacteriophage T4 DNA replication: purification of the complex specified by T4 genes 44 and 62. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2717–2721. doi: 10.1073/pnas.69.9.2717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bautz E. K., Dunn J. J. DNA-dependent RNA polymerase from phage T4 infected E. coli: an enzyme missing a factor required for transcription of T4 DNA. Biochem Biophys Res Commun. 1969 Jan 27;34(2):230–237. doi: 10.1016/0006-291x(69)90636-6. [DOI] [PubMed] [Google Scholar]
  5. Black L. W., Gold L. M. Pre-replicative development of the bacteriophage T4: RNA and protein synthesis in vivo and in vitro. J Mol Biol. 1971 Sep 14;60(2):365–388. doi: 10.1016/0022-2836(71)90300-7. [DOI] [PubMed] [Google Scholar]
  6. Bolle A., Epstein R. H., Salser W., Geiduschek E. P. Transcription during bacteriophage T4 development: requirements for late messenger synthesis. J Mol Biol. 1968 Apr 28;33(2):339–362. doi: 10.1016/0022-2836(68)90193-9. [DOI] [PubMed] [Google Scholar]
  7. Cohen P. S. Translational regulation of deoxycytidylate hydroxymethylase and deoxynucleotide kinase synthesis in T4-infected Escherichia coli. Virology. 1972 Mar;47(3):780–786. doi: 10.1016/0042-6822(72)90569-7. [DOI] [PubMed] [Google Scholar]
  8. Cohen P. S., Zetter B. R., Walsh M. L. Evidence that more deoxynucleotide kinase mRNA is transcribed than translated during T4 infection of Escherichia coli. Virology. 1972 Sep;49(3):808–810. doi: 10.1016/0042-6822(72)90538-7. [DOI] [PubMed] [Google Scholar]
  9. Cohen S. S., Flaks J. G., Barner H. D., Loeb M. R., Lichtenstein J. THE MODE OF ACTION OF 5-FLUOROURACIL AND ITS DERIVATIVES. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1004–1012. doi: 10.1073/pnas.44.10.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Colvill A. J. Early in vitro and in vivo transcription of T4 DNA. I. Effect of phage T4 infection on RNA production in Escherichia coli. Biochim Biophys Acta. 1970 May 21;209(1):97–105. doi: 10.1016/0005-2787(70)90665-9. [DOI] [PubMed] [Google Scholar]
  11. Drexler H. Transduction by bacteriophage T1. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1083–1088. doi: 10.1073/pnas.66.4.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Emrich J., Streisinger G. The role of phage lysozyme in the life cycle of phage T4. Virology. 1968 Nov;36(3):387–391. doi: 10.1016/0042-6822(68)90163-3. [DOI] [PubMed] [Google Scholar]
  13. FRASER D., JERREL E. A. The amino acid composition of T3 bacteriophage. J Biol Chem. 1953 Nov;205(1):291–295. [PubMed] [Google Scholar]
  14. Fairbanks G., Jr, Levinthal C., Reeder R. H. Analysis of C14-labeled proteins by disc electrophoresis. Biochem Biophys Res Commun. 1965 Aug 16;20(4):393–399. doi: 10.1016/0006-291x(65)90589-9. [DOI] [PubMed] [Google Scholar]
  15. Friesen J. D., Dale B., Bode W. Presence of T4 "early" messenger RNA on polysomes late in infection. J Mol Biol. 1967 Sep 28;28(3):413–422. doi: 10.1016/s0022-2836(67)80090-1. [DOI] [PubMed] [Google Scholar]
  16. Gorini L. The contrasting role of strA and ram gene products in ribosomal functioning. Cold Spring Harb Symp Quant Biol. 1969;34:101–109. doi: 10.1101/sqb.1969.034.01.016. [DOI] [PubMed] [Google Scholar]
  17. Grasso R. J., Buchanan J. M. Synthesis of early RNA in bacteriophage T4-infected Escherichia coli B. Nature. 1969 Nov 29;224(5222):882–885. doi: 10.1038/224882a0. [DOI] [PubMed] [Google Scholar]
  18. Guha A., Szybalski W., Salser W., Geiduschek E. P., Pulitzer J. F., Bolle A. Controls and polarity of transcription during bacteriophage T4 development. J Mol Biol. 1971 Jul 28;59(2):329–349. doi: 10.1016/0022-2836(71)90054-4. [DOI] [PubMed] [Google Scholar]
  19. HALL B. D., NYGAARD A. P., GREEN M. H. CONTROL OF T2-SPECIFIC RNA SYNTHESIS. J Mol Biol. 1964 Jul;9:143–153. doi: 10.1016/s0022-2836(64)80096-6. [DOI] [PubMed] [Google Scholar]
  20. HILL R. F. A radiation-sensitive mutant of Escherichia coli. Biochim Biophys Acta. 1958 Dec;30(3):636–637. doi: 10.1016/0006-3002(58)90112-4. [DOI] [PubMed] [Google Scholar]
  21. Hercules K., Munro J. L., Mendelsohn S., Wiberg J. S. Mutants in a nonessential gene of bacteriophage T4 which are defective in the degradation of Escherichia coli deoxyribonucleic acid. J Virol. 1971 Jan;7(1):95–105. doi: 10.1128/jvi.7.1.95-105.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hosoda J., Levinthal C. Protein synthesis by Escherichia coli infected with bacteriophage T4D. Virology. 1968 Apr;34(4):709–727. doi: 10.1016/0042-6822(68)90092-5. [DOI] [PubMed] [Google Scholar]
  23. Jayaraman R. Transcription of bacteriophage T4 DNA by Escherichia coli RNA polymerase in vitro: identification of some immediate-early and delayed-early genes. J Mol Biol. 1972 Sep 28;70(2):253–263. doi: 10.1016/0022-2836(72)90537-2. [DOI] [PubMed] [Google Scholar]
  24. Jensen H. B., Kleppe K. Studies on T4 lysozyme. Affinity for chitin and the use of chitin in the purification of the enzyme. Eur J Biochem. 1972 Apr 11;26(3):305–312. doi: 10.1111/j.1432-1033.1972.tb01769.x. [DOI] [PubMed] [Google Scholar]
  25. Kutter E. M., Wiberg J. S. Biological effects of substituting cytosine for 5-hydroxymethylcytosine in the deoxyribonucleic acid of bacteriophage T4. J Virol. 1969 Oct;4(4):439–453. doi: 10.1128/jvi.4.4.439-453.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Lee-Huang S., Ochoa S. Messenger discriminating species of initiation factor F3. Nat New Biol. 1971 Dec 22;234(51):236–239. doi: 10.1038/newbio234236a0. [DOI] [PubMed] [Google Scholar]
  28. Lembach K. J., Buchanan J. M. The relationship of protein synthesis to early transcriptive events in bacteriophage T4-infected Escherichia coli B. J Biol Chem. 1970 Apr 10;245(7):1575–1587. [PubMed] [Google Scholar]
  29. Lomax M. I., Greenberg G. R. A new assay of thymidylate synthetase activity based on the release of tritium from deoxyuridylate-5-3-H. J Biol Chem. 1967 Jan 10;242(1):109–113. [PubMed] [Google Scholar]
  30. Losick R. In vitro transcription. Annu Rev Biochem. 1972;41:409–446. doi: 10.1146/annurev.bi.41.070172.002205. [DOI] [PubMed] [Google Scholar]
  31. Mark K. K. The relationship between the synthesis of DNA and the synthesis of phage lysozyme in Escherichia coli infected by bacteriophage T4. Virology. 1970 Sep;42(1):20–27. doi: 10.1016/0042-6822(70)90234-5. [DOI] [PubMed] [Google Scholar]
  32. Mathews C. K., Kessin R. H. Control of bacteriophage-induced enzyme synthesis in cells infected with a temperature-sensitive mutant. J Virol. 1967 Feb;1(1):92–96. doi: 10.1128/jvi.1.1.92-96.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Notani G. W. Regulation of bacteriophage T4 gene expression. J Mol Biol. 1973 Jan 10;73(2):231–249. doi: 10.1016/0022-2836(73)90326-4. [DOI] [PubMed] [Google Scholar]
  34. Peterson R. F., Cohen P. S., Ennis H. L. Properties of phage T4 messenger RNA synthesized in the absence of protein synthesis. Virology. 1972 Apr;48(1):201–206. doi: 10.1016/0042-6822(72)90127-4. [DOI] [PubMed] [Google Scholar]
  35. Pollack Y., Groner Y., Aviv(Greenshpan) H., Revel M. Role of initiation factor B (F3) in the preferential translation of T4 late messenger RNA in T4 infected E. Coli. FEBS Lett. 1970 Aug 17;9(4):218–221. doi: 10.1016/0014-5793(70)80359-3. [DOI] [PubMed] [Google Scholar]
  36. Pryme I. F., Joner P. E., Jensen H. B. The isolation of an inhibitor of T-even phage lysozyme from E. coli B cells. FEBS Lett. 1969 Jul;4(1):50–51. doi: 10.1016/0014-5793(69)80193-6. [DOI] [PubMed] [Google Scholar]
  37. Reid M. S., Bieleski R. L. A simple apparatus for vertical flat-sheet polyacrylamide gel electrophoresis. Anal Biochem. 1968 Mar;22(3):374–381. doi: 10.1016/0003-2697(68)90278-9. [DOI] [PubMed] [Google Scholar]
  38. Rosenkranz H. S., Rosenkranz S. Degradation of DNA by carbamoyloxyurea--an oxidation product of hydroxyurea. Biochim Biophys Acta. 1969 Nov 19;195(1):266–267. doi: 10.1016/0005-2787(69)90628-5. [DOI] [PubMed] [Google Scholar]
  39. SEKIGUCHI M., COHEN S. S. THE SYNTHESIS OF MESSENGER RNA WITHOUT PROTEIN SYNTHESIS. II. SYNTHESIS OF PHAGE-INDUCED RNA AND SEQUENTIAL ENZYME PRODUCTION. J Mol Biol. 1964 May;8:638–659. doi: 10.1016/s0022-2836(64)80114-5. [DOI] [PubMed] [Google Scholar]
  40. Sadowski P. D., Warner H. R., Hercules K., Munro J. L., Mendelsohn S., Wiberg J. S. Mutants of bacteriophage T4 defective in the induction of T4 endonuclease II. J Biol Chem. 1971 May 25;246(10):3431–3433. [PubMed] [Google Scholar]
  41. Sakiyama S., Buchanan J. M. Control of the synthesis of T4 phage deoxynucleotide kinase messenger ribonucleic acid in vivo. J Biol Chem. 1972 Dec 10;247(23):7806–7814. [PubMed] [Google Scholar]
  42. Sakiyama S., Buchanan J. M. In vitro synthesis of deoxynucleotide kinase programmed by bacteriophage "T4-RNA. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1376–1380. doi: 10.1073/pnas.68.6.1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Salser W., Bolle A., Epstein R. Transcription during bacteriophage T4 development: a demonstration that distinct subclasses of the "early" RNA appear at different times and that some are "turned off" at late times. J Mol Biol. 1970 Apr 28;49(2):271–295. doi: 10.1016/0022-2836(70)90246-9. [DOI] [PubMed] [Google Scholar]
  44. Salser W., Gesteland R. F., Bolle A. In vitro synthesis of bacteriophage lysozyme. Nature. 1967 Aug 5;215(5101):588–591. doi: 10.1038/215588a0. [DOI] [PubMed] [Google Scholar]
  45. Salser W., Gesteland R. F., Ricard B. Characterization of lysozyme messenger and lysozyme synthesized in vitro. Cold Spring Harb Symp Quant Biol. 1969;34:771–780. doi: 10.1101/sqb.1969.034.01.087. [DOI] [PubMed] [Google Scholar]
  46. Schachner M., Seifert W., Zillig W. A correlation of changes in host and T 4 bacteriophage specific RNA synthesis with changes of DNA-dependent RNA polymerase in Escherichia coli infected with bacteriophage T 4 . Eur J Biochem. 1971 Oct 26;22(4):520–528. doi: 10.1111/j.1432-1033.1971.tb01572.x. [DOI] [PubMed] [Google Scholar]
  47. Schmidt D. A., Mazaitis A. J., Kasai T., Bautz E. K. Involvement of a phage T4 sigma factor and an anti-terminator protein in the transcription of early T4 genes in vivo. Nature. 1970 Mar 14;225(5237):1012–1016. doi: 10.1038/2251012a0. [DOI] [PubMed] [Google Scholar]
  48. Sköld O. Regulation of early RNA synthesis in bacteriophage T4-infected Escherichia coli cells. J Mol Biol. 1970 Nov 14;53(3):339–356. doi: 10.1016/0022-2836(70)90070-7. [DOI] [PubMed] [Google Scholar]
  49. Studier F. W. Bacteriophage T7. Science. 1972 Apr 28;176(4033):367–376. doi: 10.1126/science.176.4033.367. [DOI] [PubMed] [Google Scholar]
  50. Travers A. A. Positive control of transcription by a bacteriophage sigma factor. Nature. 1970 Mar 14;225(5237):1009–1012. doi: 10.1038/2251009a0. [DOI] [PubMed] [Google Scholar]
  51. Trimble R. B., Galivan J., Maley F. The temporal expression of T2r + bacteriophage genes in vivo and in vitro. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1659–1663. doi: 10.1073/pnas.69.7.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Trimble R. B., Maley G. F., Maley F. The in vitro synthesis of T2 bacteriophage-induced deoxycytidylate deaminase and its regulation by allosteric effectors. Arch Biochem Biophys. 1972 Dec;153(2):515–525. doi: 10.1016/0003-9861(72)90370-0. [DOI] [PubMed] [Google Scholar]
  53. WIBERG J. S., BUCHANAN J. M. STUDIES ON LABILE DEOXYCYTIDYLATE HYDROXYMETHYLASES FROM ESCHERICHIA COLI B INFECTED WITH TEMPERATURE-SENSITIVE MUTANTS OF BACTERIOPHAGE T4. Proc Natl Acad Sci U S A. 1964 Mar;51:421–428. doi: 10.1073/pnas.51.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. WIBERG J. S., DIRKSEN M. L., EPSTEIN R. H., LURIA S. E., BUCHANAN J. M. Early enzyme synthesis and its control in E. coli infected with some amber mutants of bacteriophage T4. Proc Natl Acad Sci U S A. 1962 Feb;48:293–302. doi: 10.1073/pnas.48.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Warner H. R., Hobbs M. D. Effect of hydroxyurea on replication of bacteriophage T4 in Escherichia coli. J Virol. 1969 Mar;3(3):331–336. doi: 10.1128/jvi.3.3.331-336.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Warner H. R., Snustad P., Jorgensen S. E., Koerner J. F. Isolation of bacteriophage T4 mutants defective in the ability to degrade host deoxyribonucleic acid. J Virol. 1970 Jun;5(6):700–708. doi: 10.1128/jvi.5.6.700-708.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Wiberg J. S. Amber mutants of bacteriophage T4 defective in deoxycytidine diphosphatase and deoxycytidine triphosphatase. On the role of 5-hydroxymethylcytosine in bacteriophage deoxyribonucleic acid. J Biol Chem. 1967 Dec 25;242(24):5824–5829. [PubMed] [Google Scholar]
  58. Wiberg J. S. Mutants of bacteriophage T4 unable to cause breakdown of host DNA. Proc Natl Acad Sci U S A. 1966 Mar;55(3):614–621. doi: 10.1073/pnas.55.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wilhelm J. M., Haselkorn R. In vitro synthesis of T4 proteins: lysozyme and the products of genes 22 and 57. Cold Spring Harb Symp Quant Biol. 1969;34:793–798. doi: 10.1101/sqb.1969.034.01.090. [DOI] [PubMed] [Google Scholar]
  60. Yagil E., Rosner A. Phosphorolysis of 5-fluoro-2'-deoxyuridine in Escherichia coli and its inhibition by nucleosides. J Bacteriol. 1971 Nov;108(2):760–764. doi: 10.1128/jb.108.2.760-764.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Yeh Y. C., Greenberg G. R. Tetrahydrofolate-dependent labilization of the hydrogen atom on carbon 5 of 5'-deoxycytidylate, a step in the deoxycytidylate hydroxymethylase reaction. J Biol Chem. 1967 Mar 25;242(6):1307–1313. [PubMed] [Google Scholar]
  62. Young E. T., 2nd, van Houwe G. Control of synthesis of glucosyl transferase and lysozyme messengers after T4 infection. J Mol Biol. 1970 Aug;51(3):605–619. doi: 10.1016/0022-2836(70)90011-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES