Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1973 Nov;12(5):1013–1019. doi: 10.1128/jvi.12.5.1013-1019.1973

Alteration in tRNA Methyltransferase Activity in Mengovirus Infection: Host Range Specificity

Ray Wilkinson 1, Sylvia J Kerr 1
PMCID: PMC356730  PMID: 4358158

Abstract

The tRNA methyltransferase activity in mengovirus-infected L cells, HeLa cells, and Maden Derby bovine kidney cells has been examined during the course of infection. The first two cell lines yield a productive infection, but have different kinetics of inhibition of host RNA synthesis, whereas the bovine kidney cells are a restrictive host. In infected L cells the enzymes show altered capacity and base specificity throughout the infection. In infected HeLa cells and in infected bovine kidney cells less marked changes were seen. No inhibitors or activators of the enzymes were detected in any of the infected cell lines. Labeling experiments in infected cells indicated that in infected L cells synthesis of RNA was inhibited to a greater degree than was methylation of RNA. The consequence of this would be a hypermethylation of RNA. The methylated derivatives synthesized in infected L cells showed changes in relative proportions. Infection of HeLa cells and bovine kidney cells did not show such marked effects on methylation of RNA.

Full text

PDF
1013

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ascione R., Vande Woude G. F. Inhibition of host cell ribosomal ribonucleic acid methylation by foot-and-mouth disease virus. J Virol. 1969 Nov;4(5):727–737. doi: 10.1128/jvi.4.5.727-737.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baltimore D. Purification and properties of poliovirus double-stranded ribonucleic acid. J Mol Biol. 1966 Jul;18(3):421–428. doi: 10.1016/s0022-2836(66)80034-7. [DOI] [PubMed] [Google Scholar]
  3. Bergquist P. L. A thin-layer method for the mapping of enzymatic digests of ribonucleic acids. J Chromatogr. 1965 Sep;19(3):615–618. doi: 10.1016/s0021-9673(01)99510-x. [DOI] [PubMed] [Google Scholar]
  4. Björk G. R., Svensson I. Analysis of methylated constituents from RNA by thin-layer chromatography. Biochim Biophys Acta. 1967 Apr 18;138(2):430–432. doi: 10.1016/0005-2787(67)90504-7. [DOI] [PubMed] [Google Scholar]
  5. Borek E., Kerr S. J. Atypical transfer RNA's and their origin in neoplastic cells. Adv Cancer Res. 1972;15:163–190. doi: 10.1016/s0065-230x(08)60374-7. [DOI] [PubMed] [Google Scholar]
  6. Buck C. A., Granger G. A., Taylor M. W., Holland J. J. Efficient, inefficient, and abortive infection of different mammalian cells by small RNA viruses. Virology. 1967 Sep;33(1):36–46. doi: 10.1016/0042-6822(67)90091-8. [DOI] [PubMed] [Google Scholar]
  7. Capra J. D., Peterkofsky A. Effect on in vitro methylation on the chromatographic and coding properties of methyl-deficient leucine transfer RNA. J Mol Biol. 1968 May 14;33(3):591–607. doi: 10.1016/0022-2836(68)90308-2. [DOI] [PubMed] [Google Scholar]
  8. Cordell-Stewart B., Taylor M. W. Effect of double-stranded viral RNA on mammalian cells in culture. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1326–1330. doi: 10.1073/pnas.68.6.1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ehrenfeld E., Hunt T. Double-stranded poliovirus RNA inhibits initiation of protein synthesis by reticulocyte lysates. Proc Natl Acad Sci U S A. 1971 May;68(5):1075–1078. doi: 10.1073/pnas.68.5.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FRANKLIN R. M., BALTIMORE D. Patterns of macromolecular synthesis in normal and virus-infected mammalian cells. Cold Spring Harb Symp Quant Biol. 1962;27:175–198. doi: 10.1101/sqb.1962.027.001.019. [DOI] [PubMed] [Google Scholar]
  11. Grado C., Friedlender B., Ihl M., Contreras G. Incorporation of methyl groups by viral and cellular RNA of HEp 2 cells after poliovirus infection. Virology. 1968 Jul;35(3):339–346. doi: 10.1016/0042-6822(68)90212-2. [DOI] [PubMed] [Google Scholar]
  12. Hay J., Pillinger D. J., Borek E. The effect of hypermethylation on the functional properties of transfer ribonucleic acid. Ribosome-binding and polypeptide synthesis. Biochem J. 1970 Sep;119(3):587–593. doi: 10.1042/bj1190587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kerr S. J. Competing methyltransferase systems. J Biol Chem. 1972 Jul 10;247(13):4248–4252. [PubMed] [Google Scholar]
  14. Kerr S. J. Natural inhibitors of the transfer ribonucleic acid methylases. Biochemistry. 1970 Feb 3;9(3):690–695. doi: 10.1021/bi00805a032. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. McCormick W., Penman S. Inhibition of RNA synthesis in HeLa and L cells by Mengovirus. Virology. 1967 Jan;31(1):135–141. doi: 10.1016/0042-6822(67)90017-7. [DOI] [PubMed] [Google Scholar]
  17. Nestle M., Roberts W. K. An extracellular nuclease from Serratia marcescens. I. Purification and some properties of the enzyme. J Biol Chem. 1969 Oct 10;244(19):5213–5218. [PubMed] [Google Scholar]
  18. Pillinger D. J., Hay J., Borek E. Effect of hypermethylation on the functional properties of transfer ribonucleic acid. Biochem J. 1969 Sep;114(2):429–435. doi: 10.1042/bj1140429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shugart L., Novelli G. D., Stulberg M. P. Isolation and properties of undermethylated phenylalanine transfer ribonucleic acids from a relaxed mutant of Escherichia coli. Biochim Biophys Acta. 1968 Mar 18;157(1):83–90. doi: 10.1016/0005-2787(68)90266-9. [DOI] [PubMed] [Google Scholar]
  20. Vaughan M. H., Jr, Soeiro R., Warner J. R., Darnell J. E., Jr The effects of methionine deprivation on ribosome synthesis in HeLa cells. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1527–1534. doi: 10.1073/pnas.58.4.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wainfan E., Srinivasan P. R., Borek E. Alterations in the transfer ribonucleic acid methylases after bacteriophage infection or induction. Biochemistry. 1965 Dec;4(12):2845–2848. doi: 10.1021/bi00888a040. [DOI] [PubMed] [Google Scholar]
  22. Wall R., Taylor M. W. Mengovirus RNA synthesis in productive and restrictive cell lines. Virology. 1970 Sep;42(1):78–86. doi: 10.1016/0042-6822(70)90240-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES