Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1973 Nov;12(5):1072–1077. doi: 10.1128/jvi.12.5.1072-1077.1973

Transduction of Gal+ by Coliphage T1 III. Requirement for Transcription and Translation in Recipient Cells

Henry Drexler 1
PMCID: PMC356738  PMID: 4587757

Abstract

A 10- to 15-min derepression of a λ prophage in a Gal recipient during early infection with a transducing lysate of coliphage T1am will cause an increase in the efficiency of transduction of Gal+. An increase in the efficiency of transduction occurs when the donor is either nonlysogenic or lysogenic for λ; the increase is blocked by rifampin or chloramphenicol. With strain R901 it has been shown that efficient transduction can be blocked by treatment with rifampin after all chloramphenicol-sensitive steps have occurred.

Full text

PDF
1072

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Court D., Sato K. Studies of novel transducing variants of lambda: dispensability of genes N and Q. Virology. 1969 Oct;39(2):348–352. doi: 10.1016/0042-6822(69)90060-9. [DOI] [PubMed] [Google Scholar]
  2. DREXLER H., CHRISTENSEN J. R. Genetic crosses between restricted and unrestricted phage T1 in lysogenic and non-lysogenic hosts. Virology. 1961 Jan;13:31–39. doi: 10.1016/0042-6822(61)90028-9. [DOI] [PubMed] [Google Scholar]
  3. Drexler H. Transduction by bacteriophage T1. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1083–1088. doi: 10.1073/pnas.66.4.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Drexler H. Transduction of Gal+ by coliphage T1. I. Role of hybrids of bacterial and prophage lambda deoxyribonucleic acid. J Virol. 1972 Feb;9(2):273–279. doi: 10.1128/jvi.9.2.273-279.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drexler H. Transduction of Gal+ by coliphage T1. II. Role of lambda transcription control in the efficiency of transduction. J Virol. 1972 Feb;9(2):280–285. doi: 10.1128/jvi.9.2.280-285.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GALE E. F., FOLKES J. P. The assimilation of amino-acids by bacteria. XV. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem J. 1953 Feb;53(3):493–498. doi: 10.1042/bj0530493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Herskowitz I., Signer E. R. A site essential for expression of all late genes in bacteriophage lambda. J Mol Biol. 1970 Feb 14;47(3):545–556. doi: 10.1016/0022-2836(70)90321-9. [DOI] [PubMed] [Google Scholar]
  8. Naono S., Gros F. On the mechanism of transcription of the lambda genome during induction of lysogenic bacteria. J Mol Biol. 1967 May 14;25(3):517–536. doi: 10.1016/0022-2836(67)90203-3. [DOI] [PubMed] [Google Scholar]
  9. Skalka A., Butler B., Echols H. Genetic control of transcription during development of phage gamma. Proc Natl Acad Sci U S A. 1967 Aug;58(2):576–583. doi: 10.1073/pnas.58.2.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wehrli W., Knüsel F., Schmid K., Staehelin M. Interaction of rifamycin with bacterial RNA polymerase. Proc Natl Acad Sci U S A. 1968 Oct;61(2):667–673. doi: 10.1073/pnas.61.2.667. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES