Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1973 Nov;12(5):1092–1103. doi: 10.1128/jvi.12.5.1092-1103.1973

Physical and Chemical Properties of Trichoplusia ni Granulosis Virus Granulin

Max D Summers 1, Kohji Egawa 2
PMCID: PMC356741  PMID: 4765397

Abstract

The protein solubilized from the proteinic crystalline structure surrounding the granulosis virus of Trichoplusia ni by use of a carbonate buffer (pH 10.7) gives a major component, as analyzed by ultracentrifugation, with a molecular weight of 180,000. This protein has heterogeneous subunit structure as demonstrated by estimates of molecular weights by use of gel electrophoresis, amino-, and carboxy-terminal analyses, and peptide mapping of enzyme digests of the protein. The amino acid composition shows that the protein is acidic with a high percentage of amino acids with hydrophobic side groups. Optical rotatory dispersion studies reveal the presence of β-structure in the protein complex. The conversion of the β-structure to α-helix with sodium lauryl sulfate and to a random coil state with strong alkaline treatment are observed.

Full text

PDF
1092

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOHAK Z., KATCHALSKI E. Synthesis, characterization, and acemization of poly-L-serine. Biochemistry. 1963 Mar-Apr;2:228–237. doi: 10.1021/bi00902a005. [DOI] [PubMed] [Google Scholar]
  2. Davidson B., Tooney N., Fasman G. D. The optical rotatory dispersion of the beta structure of poly-L-lysine and poly-L-serine. Biochem Biophys Res Commun. 1966 Apr 19;23(2):156–162. doi: 10.1016/0006-291x(66)90521-3. [DOI] [PubMed] [Google Scholar]
  3. Goodwin T. W., Morton R. A. The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem J. 1946;40(5-6):628–632. doi: 10.1042/bj0400628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hanlon D. P., De Vore L., Kincaid M. C., Jones A., Lane L. Thyroxine-binding prealbumin. Conformation in aqueous solutions. J Biol Chem. 1971 Oct 10;246(19):6011–6018. [PubMed] [Google Scholar]
  5. Himeno M., Onodera K. RNA isolated from polyhedra of a nuclear polyhedrosis of the silkworm. J Invertebr Pathol. 1969 Jan;13(1):87–90. doi: 10.1016/0022-2011(69)90242-0. [DOI] [PubMed] [Google Scholar]
  6. Iizuka E., Yang J. T. Optical rotatory dispersion and circular dichroism of the beta-form of silk fibroin in solution. Proc Natl Acad Sci U S A. 1966 May;55(5):1175–1182. doi: 10.1073/pnas.55.5.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LEVY A. L. A paper chromatographic method for the quantitative estimation of amino-acids. Nature. 1954 Jul 17;174(4420):126–127. doi: 10.1038/174126a0. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Nelson C. A. The binding of detergents to proteins. I. The maximum amount of dodecyl sulfate bound to proteins and the resistance to binding of several proteins. J Biol Chem. 1971 Jun 25;246(12):3895–3901. [PubMed] [Google Scholar]
  10. Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
  11. Porter R. R., Sanger F. The free amino groups of haemoglobins. Biochem J. 1948;42(2):287–294. doi: 10.1042/bj0420287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SCANES F. S., TOZER B. T. Products of hydrolysis of dinitrophenylproline and N-terminal proline-peptides with hydrochloric acid. Biochem J. 1956 Jun;63(2):282–289. doi: 10.1042/bj0630282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sanger F. The free amino groups of insulin. Biochem J. 1945;39(5):507–515. doi: 10.1042/bj0390507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sarkar P. K., Doty P. The optical rotatory properties of the beta-configuration in polypeptides and proteins. Proc Natl Acad Sci U S A. 1966 Apr;55(4):981–989. doi: 10.1073/pnas.55.4.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sattler L., Zerban F. W. The Dreywood Anthrone Reaction as Affected by Carbohydrate Structure. Science. 1948 Aug 27;108(2800):207–207. doi: 10.1126/science.108.2800.207. [DOI] [PubMed] [Google Scholar]
  16. Summers M. D., Arnott H. J. Ultrastructural studies on inclusion formation and virus occlusion in nuclear polyhedrosis and granulosis virus-infected cells of Trichoplusia ni (Hübner). J Ultrastruct Res. 1969 Sep;28(5):462–480. doi: 10.1016/s0022-5320(69)80034-1. [DOI] [PubMed] [Google Scholar]
  17. Tanada Y., Watanabe H. Disc electrophoretic and serological studies of the capsule proteins obtained from two strains of a granulosis virus of the armyworm, Pseudaletia unipuncta. J Invertebr Pathol. 1971 Nov;18(3):307–312. doi: 10.1016/0022-2011(71)90030-9. [DOI] [PubMed] [Google Scholar]
  18. Van Regenmortel M. H., Lelarge N. The antigenic specificity of different states of aggregation of tobacco mosaic virus protein. Virology. 1973 Mar;52(1):89–104. doi: 10.1016/0042-6822(73)90401-7. [DOI] [PubMed] [Google Scholar]
  19. YAMAKAWA T., UETA N. GAS-LIQUID CHROMATOGRAPHY OF CARBOHYDRATES. Jpn J Exp Med. 1964 Feb;34:37–51. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES