Abstract
Two new serological specificities were identified on the surface of murine leukemia virus (MuLV)-infected cells by direct and absorption immunofluorescence tests. Both antigens were detected with antisera prepared in rats that were growing transplants of syngenic MuLV-induced leukemias. Antigen GL was defined with the AKR leukemia K36 as the test cell; antigen GT was defined with the W/Fu leukemia C58(NT)D as the test cell. GL and GT antigens were serologically and genetically independent of the MuLV-induced Gross and GIX cell-surface antigens. GL and GT antigens were found in normal lymphoid cells of mice from high-leukemic strains, but not in lymphoid tissues of mice from most low-leukemic strains. Tumors and leukemias of mice of low-leukemic strains often were GL and GT positive. Similarly, infection of normal cells with MuLV resulted in expression of GL and GT. With ferritin-labeled antibody the GL and GT antigens were observed on virus-free segments of the cell surface. Genetically, GL and GT antigens were each controlled by two dominant unlinked genes in AKR mice; these same antigens were each controlled by three or more dominant unlinked genes in C58 mice. Penetrance of GL and GT regulatory genes was dependent upon the Fv-1 genotype of the host. Expression of GL antigen was closely associated with virus production, whereas expression of GT antigen was less closely associated.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aaronson S. A., Parks W. P., Scolnick E. M., Todaro G. J. Antibody to the RNA-dependent DNA polymerase of mammalian C-type RNA tumor viruses. Proc Natl Acad Sci U S A. 1971 May;68(5):920–924. doi: 10.1073/pnas.68.5.920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aoki T., Boyse E. A., Old L. J., De Harven E., Hämmerling U., Wood H. A. G (Gross) and H-2 cell-surface antigens: location on Gross leukemia cells by electron microscopy with visually labeled antibody. Proc Natl Acad Sci U S A. 1970 Mar;65(3):569–576. doi: 10.1073/pnas.65.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aoki T., Boyse E. A., Old L. J. Wild-type Gross leukemia virus. II. Influence of immunogenetic factors on natural transmission and on the consequences of infection. J Natl Cancer Inst. 1968 Jul;41(1):97–101. [PubMed] [Google Scholar]
- Boyse E. A., Hubbard L., Stockert E., Lamm M. E. Improved complementation in the cytotoxic test. Transplantation. 1970 Nov;10(5):446–449. doi: 10.1097/00007890-197011000-00019. [DOI] [PubMed] [Google Scholar]
- Geering G., Old L. J., Boyse E. A. Antigens of leukemias induced by naturally occurring murine leukemia virus: their relation to the antigens of gross virus and other murine leukemia viruses. J Exp Med. 1966 Oct 1;124(4):753–772. doi: 10.1084/jem.124.4.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerwin B. I., Todaro G. J., Zeve V., Scolnick E. M., Aaronson S. A. Separation of RNA-dependent DNA polymerase activity from the murine leukaemia virion. Nature. 1970 Oct 31;228(5270):435–438. doi: 10.1038/228435a0. [DOI] [PubMed] [Google Scholar]
- Herberman R. B. Serological analysis of cell surface antigens of tumors induced by murine leukemia virus. J Natl Cancer Inst. 1972 Jan;48(1):265–271. [PubMed] [Google Scholar]
- Ikeda H., Stockert E., Rowe W. P., Boyse E. A., Lilly F., Sato H., Jacobs S., Old L. J. Relation of chromosome 4 (linkage group 8) to murine leukemia virus-associated antigens of AKR mice. J Exp Med. 1973 Apr 1;137(4):1103–1107. doi: 10.1084/jem.137.4.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nowinski R. C., Fleissner E., Sarkar N. H., Aoki T. Chromatographic separation and antigenic analysis of proteins of the oncornaviruses. II. Mammalian leukemia-sarcoma viruses. J Virol. 1972 Feb;9(2):359–366. doi: 10.1128/jvi.9.2.359-366.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Old L. J., Boyse E. A. Current enigmas in cancer research. Harvey Lect. 1973;67:273–315. [PubMed] [Google Scholar]
- Old L. J., Boyse E. A., Stockert E. The G (Gross) leukemia antigen. Cancer Res. 1965 Jul;25(6):813–819. [PubMed] [Google Scholar]
- Pincus T., Hartley J. W., Rowe W. P. A major genetic locus affecting resistance to infection with murine leukemia viruses. I. Tissue culture studies of naturally occurring viruses. J Exp Med. 1971 Jun 1;133(6):1219–1233. doi: 10.1084/jem.133.6.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pincus T., Rowe W. P., Lilly F. A major genetic locus affecting resistance to infection with murine leukemia viruses. II. Apparent identity to a major locus described for resistance to friend murine leukemia virus. J Exp Med. 1971 Jun 1;133(6):1234–1241. doi: 10.1084/jem.133.6.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rowe W. P., Hartley J. W., Bremner T. Genetic mapping of a murine leukemia virus-inducing locus of AKR mice. Science. 1972 Nov 24;178(4063):860–862. doi: 10.1126/science.178.4063.860. [DOI] [PubMed] [Google Scholar]
- Rowe W. P., Hartley J. W. Studies of genetic transmission of murine leukemia virus by AKR mice. II. Crosses with Fv-1 b strains of mice. J Exp Med. 1972 Nov 1;136(5):1286–1301. doi: 10.1084/jem.136.5.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rowe W. P., Humphrey J. B., Lilly F. A major genetic locus affecting resistance to infection with murine leukemia viruses. 3. Assignment of the Fv-1 locus to linkage group 8 of the mouse. J Exp Med. 1973 Mar 1;137(3):850–853. doi: 10.1084/jem.137.3.850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rowe W. P., Pugh W. E., Hartley J. W. Plaque assay techniques for murine leukemia viruses. Virology. 1970 Dec;42(4):1136–1139. doi: 10.1016/0042-6822(70)90362-4. [DOI] [PubMed] [Google Scholar]
- Rowe W. P., Sato H. Genetic mapping of the Fv-1 lcous of the mouse. Science. 1973 May 11;180(4086):640–641. doi: 10.1126/science.180.4086.640. [DOI] [PubMed] [Google Scholar]
- Rowe W. P. Studies of genetic transmission of murine leukemia virus by AKR mice. I. Crosses with Fv-1 n strains of mice. J Exp Med. 1972 Nov 1;136(5):1272–1285. doi: 10.1084/jem.136.5.1272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephenson J. R., Aaronson S. A. A genetic locus for inducibility of C-type in BALB-c cells: the effect of a nonlinked regulatory gene on detection of virus after chemical activation. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2798–2801. doi: 10.1073/pnas.69.10.2798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephenson J. R., Aaronson S. A. Segregation of loci for C-type virus induction in strains of mice with high and low incidence of leukemia. Science. 1973 May 25;180(4088):865–866. doi: 10.1126/science.180.4088.865. [DOI] [PubMed] [Google Scholar]
- Stockert E., Old L. J., Boyse E. A. The G-IX system. A cell surface allo-antigen associated with murine leukemia virus; implications regarding chromosomal integration of the viral genome. J Exp Med. 1971 Jun 1;133(6):1334–1355. doi: 10.1084/jem.133.6.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stockert E., Sato H., Itakura K., Boyse E. A., Old L. J., Hutton J. J. Location of the second gene required for expression of the leukemia-associated mouse antigens G IX . Science. 1972 Nov 24;178(4063):862–863. doi: 10.1126/science.178.4063.862. [DOI] [PubMed] [Google Scholar]
- Taylor B. A., Meier H., Huebner R. J. Genetic control of the group-specific antigen of murine leukaemia virus. Nat New Biol. 1973 Feb 7;241(110):184–186. doi: 10.1038/newbio241184a0. [DOI] [PubMed] [Google Scholar]