Abstract
Analysis of bacteriophage CB3 infection of Pseudomonas aeruginosa strain PAT2 establishes that phage induced changes in net macromolecular synthesis are absent at nonpermissive phage growth temperatures (32 C). Alterations which are evident in the PAT2 strain at 37 C or in the fully permissive strain, PAO1C, at either warm or cold temperatures do not occur in PAT2 at low temperatures. CB3 DNA synthesis and the degradation of host DNA to approximately 78S components occur at 37 C, but are absent in PAT2 at 20 C. Nevertheless, attachment of phage DNA to host cytoplasmic material occurs under permissive and nonpermissive conditions. This binding of phage DNA at 20 C is identical in nature to phage DNA bound at 37 C. Thus, the conditional cold-sensitive PAT2 host function in the growth of CB3 is expressed subsequent to membrane binding of the infecting genomes but prior to the onset of the initiation of CB3 DNA synthesis, the inhibition of host DNA synthesis, and the transient depression in RNA synthesis which occurs in permissive cells.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURGI E., HERSHEY A. D. Sedimentation rate as a measure of molecular weight of DNA. Biophys J. 1963 Jul;3:309–321. doi: 10.1016/s0006-3495(63)86823-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Botstein D. Synthesis and maturation of phage P22 DNA. I. Identification of intermediates. J Mol Biol. 1968 Jun 28;34(3):621–641. doi: 10.1016/0022-2836(68)90185-x. [DOI] [PubMed] [Google Scholar]
- COHEN S. S., ARBOGAST R. Chemical studies in host-virus interactions; the mutual reactivation of T2r virus inactivated by ultraviolet light and the synthesis of desoxyribose nucleic acid. J Exp Med. 1950 Jun 1;91(6):637–650. doi: 10.1084/jem.91.6.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen S. N., Chang A. C. Genetic expression in bacteriophage lambda. 3. Inhibition of Escherichia coli nucleic acid and protein synthesis during lambda development. J Mol Biol. 1970 May 14;49(3):557–575. doi: 10.1016/0022-2836(70)90281-0. [DOI] [PubMed] [Google Scholar]
- Denhardt D. T., Burgess A. B. DNA replication in vitro. I. Synthesis of single-stranded phi X174 DNA in crude lysates of phi X-infected E. coli. Cold Spring Harb Symp Quant Biol. 1968;33:449–457. doi: 10.1101/sqb.1968.033.01.052. [DOI] [PubMed] [Google Scholar]
- Espejo R. T., Canelo E. S., Sinsheimer R. L. Replication of bacteriophage PM2 deoxyribonucleic acid: a closed circular double-stranded molecule. J Mol Biol. 1971 Mar 28;56(3):597–621. doi: 10.1016/0022-2836(71)90404-9. [DOI] [PubMed] [Google Scholar]
- Ganesan A. T. Adenosine triphosphate-dependent synthesis of biologically active DNA by azide-poisoned bacteria. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1296–1300. doi: 10.1073/pnas.68.6.1296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huberman J. A. Visualization of replicating mammalian and T4 bacteriophage DNA. Cold Spring Harb Symp Quant Biol. 1968;33:509–524. doi: 10.1101/sqb.1968.033.01.059. [DOI] [PubMed] [Google Scholar]
- Knippers R., Sinsheimer R. L. Process of infection with bacteriophage phiX174. XX. Attachment of the parental DNA of bacteriophage phiX174 to a fast-sedimenting cell component. J Mol Biol. 1968 May 28;34(1):17–29. doi: 10.1016/0022-2836(68)90231-3. [DOI] [PubMed] [Google Scholar]
- LURIA S. E., HUMAN M. L. Chromatin staining of bacteria during bacteriophage infection. J Bacteriol. 1950 Apr;59(4):551–560. doi: 10.1128/jb.59.4.551-560.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linial M., Malamy M. H. Studies with bacteriophage phi II. Events following infection of male and female derivatives of Escherichia coli K-12. J Virol. 1970 Jan;5(1):72–78. doi: 10.1128/jvi.5.1.72-78.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrison T. G., Malamy M. H. T7 translational control mechanisms and their inhibiton by F factors. Nat New Biol. 1971 May 12;231(19):37–41. doi: 10.1038/newbio231037a0. [DOI] [PubMed] [Google Scholar]
- Olsen R. H., Metcalf E. S., Brandt C. Conditional temperature-sensitive restriction of Pseudomonas bacteriophge CB3. J Virol. 1968 Dec;2(12):1393–1399. doi: 10.1128/jvi.2.12.1393-1399.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olsen R. H., Metcalf E. S., Todd J. K. Characteristics of bacteriophages attacking psychrophilic and mesophilic pseudomonads. J Virol. 1968 Apr;2(4):357–364. doi: 10.1128/jvi.2.4.357-364.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakaki Y., Mizuno S., Maruo B. The binding of the parental DNA from bacteriophages to the cell membrane of Escherichia coli. Biochim Biophys Acta. 1971 Feb 25;232(1):14–20. doi: 10.1016/0005-2787(71)90486-2. [DOI] [PubMed] [Google Scholar]
- Salivar W. O., Gardinier J. Replication of bacteriophage lambda DNA associated with the host cell membrane. Virology. 1970 May;41(1):38–51. doi: 10.1016/0042-6822(70)90052-8. [DOI] [PubMed] [Google Scholar]
- Salivar W. O., Sinsheimer R. L. Intracellular location and number of replicating parental DNA molecules of bacteriophages lambda and phi-X174. J Mol Biol. 1969 Apr 14;41(1):39–65. doi: 10.1016/0022-2836(69)90124-7. [DOI] [PubMed] [Google Scholar]
- Stuy J. H. Phage resistance in Haemophilus influenzae. Biochem Biophys Res Commun. 1968 Nov 25;33(4):682–687. doi: 10.1016/0006-291x(68)90350-1. [DOI] [PubMed] [Google Scholar]
- Summers W. C. The process of infection with coliphage T7. I. Characterization of T7 RNA by polyacrylamide gel electrophoretic analysis. Virology. 1969 Oct;39(2):175–181. doi: 10.1016/0042-6822(69)90037-3. [DOI] [PubMed] [Google Scholar]
- Thomas C. A., Jr, Kelly T. J., Jr, Rhoades M. The intracellular forms of T7 and P22 DNA molecules. Cold Spring Harb Symp Quant Biol. 1968;33:417–424. doi: 10.1101/sqb.1968.033.01.048. [DOI] [PubMed] [Google Scholar]
- Tomizawa J., Ogawa T. Replication of phage lambda DNA. Cold Spring Harb Symp Quant Biol. 1968;33:533–551. doi: 10.1101/sqb.1968.033.01.061. [DOI] [PubMed] [Google Scholar]
