Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 19;69(Pt 2):i8–i9. doi: 10.1107/S1600536813001013

Pirquitasite, Ag2ZnSnS4

Benjamin N Schumer a,*, Robert T Downs a, Kenneth J Domanik b, Marcelo B Andrade a, Marcus J Origlieri a
PMCID: PMC3569172  PMID: 23424398

Abstract

Pirquitasite, ideally Ag2ZnSnS4 (disilver zinc tin tetra­sulfide), exhibits tetra­gonal symmetry and is a member of the stannite group that has the general formula A2BCX 4, with A = Ag, Cu; B = Zn, Cd, Fe, Cu, Hg; C = Sn, Ge, Sb, As; and X = S, Se. In this study, single-crystal X-ray diffraction data are used to determine the structure of pirquitasite from a twinned crystal from the type locality, the Pirquitas deposit, Jujuy Province, Argentina, with anisotropic displacement parameters for all atoms, and a measured composition of (Ag1.87Cu0.13)(Zn0.61Fe0.36Cd0.03)SnS4. One Ag atom is located on Wyckoff site Wyckoff 2a (symmetry -4..), the other Ag atom is statistically disordered with minor amounts of Cu and is located on 2c (-4..), the (Zn, Fe, Cd) site on 2d (-4..), Sn on 2b (-4..), and S on general site 8g. This is the first determination of the crystal structure of pirquitasite, and our data indicate that the space group of pirquitasite is I-4, rather than I-42m as previously suggested. The structure was refined under consideration of twinning by inversion [twin ratio of the components 0.91 (6):0.09 (6)].

Related literature  

For related structures in the stannite–kesterite series, see: Orlova (1956); Hall et al. (1978); Kissin & Owens (1979); Bonazzi et al. (2003). For previous work on hocartite and pirquitasite, see: Johan & Picot (1982). For details on synthetic stannite group phases, see: Salomé et al. (2012); Sasamura et al. (2012); Tsuji et al. 2010). For other stannite group minerals, see: Chen et al. (1998); Frenzel (1959); Garin & Parthé (1972); Johan et al. (1971); Kaplunnik et al. (1977); Kissin & Owens (1989); Marumo & Nowaki (1967); Murciego et al. (1999); Szymański (1978); Wintenberger (1979).

Experimental  

Crystal data  

  • (Ag1.87Cu0.13)(Zn0.61Fe0.36Cd0.03)SnS4

  • M r = 520.26

  • Tetragonal, Inline graphic

  • a = 5.7757 (12) Å

  • c = 10.870 (2) Å

  • V = 362.60 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 12.58 mm−1

  • T = 293 K

  • 0.05 × 0.05 × 0.04 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2005) T min = 0.572, T max = 0.633

  • 1312 measured reflections

  • 575 independent reflections

  • 570 reflections with I > 2σ(I)

  • R int = 0.013

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.070

  • S = 1.17

  • 575 reflections

  • 24 parameters

  • 4 restraints

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.87 e Å−3

  • Absolute structure: Flack (1983)

  • Flack parameter: 0.91 (6)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001013/br2219sup1.cif

e-69-000i8-sup1.cif (12.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001013/br2219Isup2.hkl

e-69-000i8-Isup2.hkl (28.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Table 1. Minerals of the Stannite Group.

Mineral Formula Space Group Reference
Stannite Cu2FeSnS4 I Inline graphic2m Hall et al. (1978)
Hocartite Ag2FeSnS4 I Inline graphic2m Johan & Picot (1982)
Kuramite Cu2 1+Cu2+SnS4 I Inline graphic2m Chen et al. (1998)
Černyite Cu2CdSnS4 I Inline graphic2m Szymański (1978)
Velikite Cu2HgSnS4 I Inline graphic2m Kaplunnik et al. (1977)
Famatinite Cu2 1+Cu2+SbS4 I Inline graphic2m Garin & Parthé (1972)
Luzonite Cu2 1+Cu2+AsS4 I Inline graphic2m Marumo & Nowaki (1967)
Barquillite Cu2(Cd,Fe2+)GeS4 I Inline graphic2m Murciego et al. (1999)
Briartite Cu2FeGeS4 I Inline graphic2m Wintenberger (1979)
Permingeatite Cu2 1+Cu2+SbSe4 I Inline graphic2m Johan et al. (1971)
Kesterite Cu2ZnSnS4 I Inline graphic Kissin & Owens (1979)
Ferrokesterite Cu2(Fe,Zn)SnS4 I Inline graphic Kissin & Owens (1989)
Pirquitasite Ag2ZnSnS4 I Inline graphic This study
Idaite Cu2 +Cu2+FeS4 Unknown Frenzel (1959)

Acknowledgments

We gratefully acknowledge the support of the Arizona Science Foundation and CNPq 202469/2011–5 from the Brazilian Government for MBA. Special thanks go to Dr David Brown for pointing out that bond-valence calculations corroborate the ordering of Cu to the Ag2 site.

supplementary crystallographic information

Comment

Pirquitasite is a member of the stannite group of tetragonal sulfides, which exhibit space group I42m or I4, and is an ordered derivative of the sphalerite structure (Johan and Picot, 1982). The stannite group currently contains thirteen species (Table 1), of which only kësterite, ferrokësterite, and pirquitasite are known to display space group I4. Synthetic sulfides with stannite type structures are utilized as the light absorber layer in photovoltaic cells (e.g. Salomé et al. 2012, Sasamura et al. 2012, Tsuji et al. 2010).

Pirquitasite was first described by Johan and Picot (1982), from the Pirquitas deposit, Argentina, as a silver zinc tin sulfide with ideal chemical formula Ag2ZnSnS4 and a stannite-like structure. An extensive solid solution between hocartite (Ag2FeSnS4) and pirquitasite was described by Johan and Picot (1982). Because of the solid solution and the I42m symmetry attributed to hocartite, Johan and Picot (1982) proposed that pirquitasite also exhibits I42m symmetry.

The structure was refined using both I42m and I4, with the R factor for I4 (R = 0.027) significantly lower than for I42m (R = 0.051). The structure of pirquitasite is a derivative of the cubic sphalerite structure that displays cubic closest packed (CCP) layers of S stacked along [111]. Because pirquitasite has a doubled c cell dimension, its stacking direction is [221]. Half of the tetrahedral sites are occupied by Ag, (Zn,Fe), and Sn cations, forming metal layers described by Hall et al. (1978), and it is the arrangement of Ag, (Zn,Fe), and Sn within these layers that differentiates the I4 kësterite structure from the I42m stannite structure.

Stannite and kësterite were originally recognized as distinct species because of different Fe—Zn compositional ratios and different optical properties (Orlova, 1956; Hall et al. 1978). Structural and chemical analyses by Hall et al. (1978) and Kissin and Owens (1979) not only showed a miscibility gap between the pure Fe end-member stannite and the pure Zn end-member kësterite, but found the two minerals differed in symmetry from I42m (stannite) to I4 (kësterite). In I42m, Cu atoms are ordered to the Wyckoff 4d site, (Fe,Zn) atoms are ordered to Wyckoff 2a, Sn is ordered to 2b (Hall et al. 1978). For comparison, the I4 symmetry has Cu atoms ordered to two sites: 2a and 2c, (Zn,Fe) ordered to 2d, Sn ordered to 2b (Hall et al. 1978). As pointed out by Hall et al. (1978), two distinct metal layers perpendicular to [001] result from this ordering in each mineral. Stannite exhibits one layer of Cu atoms only, with the other layer consisting of ordered Fe and Sn atoms, while kësterite exhibits one layer of ordered Cu and Sn atoms and one layer of ordered Zn and Cu atoms (Hall et al. 1978). This is illustrated for pirquitasite versus stannite in Fig. 1, which shows the pirquitasite structure (Fig. 1a) with one layer containing ordered Ag and Sn, the second containing ordered Zn and Ag. For comparison, the two stannite metal layers consist of one layer of Fe and Sn atoms and a second layer containing only Cu atoms (Fig. 1 b). The Ag—Sn layers in pirquitasite and Fe—Sn layers in stannite are ordered identically: Ag—Sn—Ag—Sn and Fe—Sn—Fe—Sn respectively when viewed along (100).

The mineral hocartite (tetragonal Ag2FeSnS4) is reported to exhibit space group I42m (Johan and Picot, 1982), but its structure is as yet unreported. It is likely that the hocartite-pirquitasite series follows the same systematics as the stannite-kësterite series.

An interesting feature is the distortion displayed by the AgS4 tetrahedra, with tetrahedral angle variance of 8.86° displayed by Ag1S4 and 25.40° displayed by Ag2S4. M-S bond lengths are 2.539 Å and 2.497 Å for the Ag1S4 and Ag2S4 tetrahedra, respectively. As our sample contains approximately 13% apfu Cu, this Cu appears to be located in the Ag2 site because the bond lengths are smaller and the tetrahedron can accomodate the distortion. Bond valence calculations gave sums of 1.28 valence units (VU) and 1.35 VU for Ag1 and Ag2, respectively, corroborating that Cu is ordered to the Ag2 site. In a study of the mechanism of incorporation of Cu, Fe, and Zn in the stannite-kësterite series, Bonazzi et al. (2003) studied synthetic crystals, quenched from 1023 Kelvin, of composition Cu2Fe1-XZnXS4 (X = 0, 1/5, 1/2, 0.7, 0.8, 1), which showed decreasing tetrahedral angle distortion with increasing Zn content across the stannite-kësterite compositions.

Experimental

The pirquitasite specimen used in this study comes from the type locality, the Pirquitas deposit, Jujuy Province, Argentina and is in the collection of the RRUFF project (http://rruff.info/R061016). The chemical composition, (Ag1.87Cu0.13)(Zn0.61Fe0.36Cd0.03)SnS4, was determined with a CAMECA SX100 electron microprobe. The composition was normalized to four cations.

Refinement

The structure was refined with the inversion twin (-1 0 0/0 - 1 0/0 0 - 1) to a ratio of 0.91 (6). During refinement, the chemistry was constrained to the empirical formula of (Ag1.87Cu0.13)(Zn0.61Fe0.36Cd0.03)SnS4. The maximum residual electron density in the difference Fourier maps was located at (0.0434, 0.0434, 0.2204), 0.56 Å from Ag2 and the minimum at (0, 0, 0.0693) 0.75 Å from Ag1.

Figures

Fig. 1.

Fig. 1.

Diagrams of displacement ellipsoids drawn at the 99.999% level for (a) pirquitasite and (b) stannite viewed along (100), with [001] vertical. The two types of metal layers are stacked along [001].

Crystal data

(Ag1.87Cu0.13)(Zn0.61Fe0.36Cd0.03)SnS4 Dx = 4.765 Mg m3
Mr = 520.26 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4 Cell parameters from 527 reflections
Hall symbol: I -4 θ = 6.3–32.3°
a = 5.7757 (12) Å µ = 12.58 mm1
c = 10.870 (2) Å T = 293 K
V = 362.60 (13) Å3 Cuboid, grey
Z = 2 0.05 × 0.05 × 0.04 mm
F(000) = 470

Data collection

Bruker APEXII CCD area-detector diffractometer 575 independent reflections
Radiation source: fine-focus sealed tube 570 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.013
φ and ω scan θmax = 32.0°, θmin = 3.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2005) h = −4→8
Tmin = 0.572, Tmax = 0.633 k = −8→7
1312 measured reflections l = −16→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0272P)2 + 2.1498P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.027 (Δ/σ)max < 0.001
wR(F2) = 0.070 Δρmax = 1.05 e Å3
S = 1.17 Δρmin = −0.87 e Å3
575 reflections Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
24 parameters Extinction coefficient: 0.0061 (6)
4 restraints Absolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methods Flack parameter: 0.91 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ag1 0.0000 0.0000 0.0000 0.0364 (4)
Ag2 0.0000 0.5000 0.2500 0.0301 (6) 0.87
Cu 0.0000 0.5000 0.2500 0.0301 (6) 0.13
Zn 0.5000 0.0000 0.2500 0.0220 (6) 0.61
Fe 0.5000 0.0000 0.2500 0.0220 (6) 0.36
Cd 0.5000 0.0000 0.2500 0.0220 (6) 0.03
Sn 0.5000 0.5000 0.0000 0.01176 (18)
S 0.7325 (3) 0.2526 (4) 0.12847 (11) 0.0214 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.0360 (5) 0.0360 (5) 0.0372 (4) 0.000 0.000 0.000
Ag2 0.0274 (7) 0.0274 (7) 0.0355 (9) 0.000 0.000 0.000
Cu 0.0274 (7) 0.0274 (7) 0.0355 (9) 0.000 0.000 0.000
Zn 0.0248 (8) 0.0248 (8) 0.0163 (9) 0.000 0.000 0.000
Fe 0.0248 (8) 0.0248 (8) 0.0163 (9) 0.000 0.000 0.000
Cd 0.0248 (8) 0.0248 (8) 0.0163 (9) 0.000 0.000 0.000
Sn 0.0114 (2) 0.0114 (2) 0.0125 (3) 0.000 0.000 0.000
S 0.0250 (6) 0.0212 (6) 0.0181 (6) 0.0053 (5) −0.0023 (5) 0.0044 (5)

Geometric parameters (Å, º)

Ag1—Si 2.5430 (17) Zn—Siv 2.383 (2)
Ag1—Sii 2.5430 (17) Zn—Sviii 2.383 (2)
Ag1—Siii 2.5430 (17) Zn—S 2.383 (2)
Ag1—Siv 2.5430 (17) Zn—Svii 2.383 (2)
Ag2—Siii 2.485 (2) Sn—Sii 2.4070 (16)
Ag2—Sv 2.485 (2) Sn—S 2.4070 (16)
Ag2—Svi 2.485 (2) Sn—Sv 2.4070 (16)
Ag2—Svii 2.485 (2) Sn—Six 2.4070 (16)
Si—Ag1—Sii 113.39 (6) Siv—Zn—Sviii 107.90 (4)
Si—Ag1—Siii 107.55 (3) Siv—Zn—S 112.66 (8)
Sii—Ag1—Siii 107.55 (3) Sviii—Zn—S 107.90 (4)
Si—Ag1—Siv 107.55 (3) Siv—Zn—Svii 107.90 (4)
Sii—Ag1—Siv 107.55 (3) Sviii—Zn—Svii 112.66 (8)
Siii—Ag1—Siv 113.39 (6) S—Zn—Svii 107.90 (4)
Siii—Ag2—Sv 115.77 (7) Sii—Sn—S 109.67 (4)
Siii—Ag2—Svi 106.42 (3) Sii—Sn—Sv 109.67 (4)
Sv—Ag2—Svi 106.42 (3) S—Sn—Sv 109.08 (7)
Siii—Ag2—Svii 106.42 (3) Sii—Sn—Six 109.08 (7)
Sv—Ag2—Svii 106.42 (3) S—Sn—Six 109.67 (4)
Svi—Ag2—Svii 115.77 (7) Sv—Sn—Six 109.67 (4)

Symmetry codes: (i) −y, x−1, −z; (ii) y, −x+1, −z; (iii) x−1, y, z; (iv) −x+1, −y, z; (v) −x+1, −y+1, z; (vi) y−1/2, −x+3/2, −z+1/2; (vii) −y+1/2, x−1/2, −z+1/2; (viii) y+1/2, −x+1/2, −z+1/2; (ix) −y+1, x, −z.

Table 1. Minerals of the Stannite Group

Mineral Formula Space Group Reference
Stannite Cu2FeSnS4 I42m Hall et al. (1978)
Hocartite Ag2FeSnS4 I42m Johan & Picot (1982)
Kuramite Cu21+Cu2+SnS4 I42m Chen et al. (1998)
Černyite Cu2CdSnS4 I42m Szymański (1978)
Velikite Cu2HgSnS4 I42m Kaplunnik et al. (1977)
Famatinite Cu21+Cu2+SbS4 I42m Garin & Parthé (1972)
Luzonite Cu21+Cu2+AsS4 I42m Marumo & Nowaki (1967)
Barquillite Cu2(Cd,Fe2+)GeS4 I42m Murciego et al. (1999)
Briartite Cu2FeGeS4 I42m Wintenberger (1979)
Permingeatite Cu21+Cu2+SbSe4 I42m Johan et al. (1971)
Kesterite Cu2ZnSnS4 I4 Kissin & Owens (1979)
Ferrokesterite Cu2(Fe,Zn)SnS4 I4 Kissin & Owens (1989)
Pirquitasite Ag2ZnSnS4 I4 This study
Idaite Cu2+Cu2+FeS4 Unknown Frenzel (1959)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2219).

References

  1. Bonazzi, P., Bindi, L., Bernardini, G. P. & Menchetti, S. (2003). Can. Mineral. 41, 639–647.
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, X., Wada, H., Sato, A. & Mieno, M. (1998). J. Appl. Chem. 139, 144–151.
  4. Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247–250.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Frenzel, G. (1959). N. Jahrb. Min. Abh. 93, 87–114.
  7. Garin, J. & Parthé, E. (1972). Acta Cryst. B28, 3672–3674.
  8. Hall, S. R., Szymański, J. T. & Stewart, J. M. (1978). Can. Mineral. 16, 131–137.
  9. Johan, Z. & Picot, P. (1982). Bull. Mineral, 105, 229–235.
  10. Johan, Z., Picot, P., Pierrot, R. & Kvacek, M. (1971). Bull. Soc. Fr. Min. Cryst. 94, 162–165.
  11. Kaplunnik, L. N., Pobedimskaya, B. A. & Belov, N. V. (1977). Sov. Phys. Crystallogr. 22, 99–100.
  12. Kissin, S. A. & Owens, D. R. (1979). Can Mineral. 17, 125-135.
  13. Kissin, S. A. & Owens, D. R. (1989). Can. Mineral. 27, 673–688.
  14. Marumo, F. & Nowaki, W. (1967). Z. Kristallogr. 124, 1–8.
  15. Murciego, A., Pascua, M. I., Babkine, J., Dusausoy, Y., Medenbach, O. & Bernhardt, H. J. (1999). Eur. J. Mineral. 11, 111–117.
  16. Orlova, Z. V. (1956). Trudy Vses. Mag. Nauch. 2, 76–84.
  17. Salomé, P. M. P., Malaquais, J., Fernandes, P. A., Ferreira, M. S., da Cunha, A. F., Leitão, J. P., Gonzales, J. C. & Matinaga, F. M. (2012). Solar En. Mat. Solar Cells, 101, 147–153.
  18. Sasamura, T., Osaki, T., Kameyama, T., Shibayama, T., Kudo, A., Kuwobata, S. & Torimoto, T. (2012). Chem. Lett. 41, 1009–1011.
  19. Sheldrick, G. M. (2005). SADABS University of Göttingen, Germany.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Szymański, J. T. (1978). Can. Mineral. 16, 147–151.
  22. Tsuji, I., Shimodaira, Y., Kato, H., Kobayashi, H. & Kudo, A. (2010). Chem. Mater. 22, 1402–1409.
  23. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  24. Wintenberger, M. (1979). Mat. Res. Bull. 14, 1195–1202.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001013/br2219sup1.cif

e-69-000i8-sup1.cif (12.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001013/br2219Isup2.hkl

e-69-000i8-Isup2.hkl (28.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES