Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 19;69(Pt 2):i11–i12. doi: 10.1107/S1600536813001499

Reinvestigation of trilithium divanadium(III) tris­(orthophosphate), Li3V2(PO4)3, based on single-crystal X-ray data

Yongho Kee a, Hoseop Yun a,*
PMCID: PMC3569174  PMID: 23424392

Abstract

The structure of Li3V2(PO4)3 has been reinvestigated from single-crystal X-ray data. Although the results of the previous studies (all based on powder diffraction data) are comparable with our redetermination, all atoms were refined with anisotropic displacement parameters in the current study, and the resulting bond lengths are more accurate than those determined from powder diffraction data. The title compound adopts the Li3Fe2(PO4)3 structure type. The structure is composed of VO6 octa­hedra and PO4 tetra­hedra by sharing O atoms to form the three-dimensional anionic framework 3[V2(PO4)3]3−. The positions of the Li+ ions in the empty channels can vary depending on the synthetic conditions. Bond-valence-sum calculations showed structures that are similar to the results of the present study seem to be more stable compared with others. The classical charge balance of the title compound can be represented as [Li+]3[V3+]2[P5+]3[O2−]12.

Related literature  

For the isotypic Li3Fe2(PO4)3 structure, see: Patoux et al. (2003). Structural studies of Li3V2(PO4)3 based on powder diffraction data have been reported previously by Yin et al. (2003); Patoux et al. (2003); Kuo et al. (2008); Yang et al. (2010); Fu et al. (2010). For ionic radii, see: Shannon (1976). For bond-valence calculations, see: Adams (2001). For the Inorganic Crystal Structure Database, see: ICSD (2012).

Experimental  

Crystal data  

  • Li3V2(PO4)3

  • M r = 407.61

  • Monoclinic, Inline graphic

  • a = 8.6201 (4) Å

  • b = 8.6013 (4) Å

  • c = 14.7465 (7) Å

  • β = 125.204 (3)°

  • V = 893.39 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.70 mm−1

  • T = 290 K

  • 0.08 × 0.04 × 0.04 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.741, T max = 1.000

  • 8328 measured reflections

  • 2031 independent reflections

  • 1772 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.062

  • S = 1.08

  • 2031 reflections

  • 181 parameters

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813001499/wm2716sup1.cif

e-69-00i11-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001499/wm2716Isup2.hkl

e-69-00i11-Isup2.hkl (97.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Li1—O4 1.930 (6)
Li1—O5 1.940 (6)
Li1—O3i 2.094 (6)
Li1—O10ii 2.215 (6)
Li2—O3 1.968 (6)
Li2—O1 1.974 (6)
Li2—O7 2.004 (6)
Li2—O9 2.153 (7)
Li3—O6 1.944 (5)
Li3—O10 1.946 (5)
Li3—O11 1.994 (5)
Li3—O9 2.014 (6)
V1—O2 1.9040 (19)
V1—O8 1.954 (2)
V1—O1i 2.0163 (19)
V1—O7 2.0168 (18)
V1—O5 2.0450 (18)
V1—O3i 2.1172 (18)
V2—O12iii 1.9099 (19)
V2—O6 1.9810 (18)
V2—O4 2.0012 (18)
V2—O11 2.0316 (18)
V2—O10ii 2.0343 (19)
V2—O9ii 2.0618 (18)
P1—O2iv 1.5199 (19)
P1—O4v 1.5297 (19)
P1—O1 1.5310 (19)
P1—O6 1.5400 (18)
P2—O8vi 1.492 (2)
P2—O9 1.5419 (19)
P2—O7 1.5458 (18)
P2—O10ii 1.5497 (19)
P3—O12 1.5101 (19)
P3—O11 1.5343 (19)
P3—O5vii 1.5454 (19)
P3—O3ii 1.5506 (18)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (grant No. 2011–0011309).

supplementary crystallographic information

Comment

Trilithium divanadium(III) tris(orthophosphate), Li3V2(PO4)3, has been investigated as a cathode material of secondary batteries (Yin et al., 2003) and its structure has been reported based on powder diffraction data (Yin et al., 2003; Patoux et al., 2003; Kuo et al., 2008; Yang et al., 2010; Fu et al., 2010). In an attempt to prepare new mixed-metal phosphates using LiCl as a flux, we were able to isolate crystals of Li3V2(PO4)3, and report here the results of the structure analysis based on single-crystal X-ray diffraction data.

The title compound adopts the Li3Fe2(PO4)3 structure type. The general structural features of this compound are the same as reported previously (Patoux et al., 2003; Fu et al., 2010). However, as would be expected, the bond lengths found here from single-crystal diffraction data are more accurate than those reported previously from powder diffraction data. For example, the V—O distances (Table 1) reported by Kuo et al. (2008) range from 1.846 (3) to 2.258 (4) Å compared with 1.904 (2)–2.117 (2) Å here. Figure 1 shows the local coordination environment of the V and P atoms. In the structure, VO6 octahedra are joined to PO4 tetrahedra forming a [V2(PO4)3] unit. These units share a terminal oxygen atom to construct the anionic three-dimensional framework, 3[V2(PO4)3]3- (Fig. 2). The V—O distances are in good agreement with those calculated from their ionic radii (1.99 Å, Shannon, 1976), assuming a valence of +III for V.

The Li+ ions in the empty channels are surrounded by four O atoms in distorted tetrahedral coordination sites. There are three crystallographically independent Li sites for this phase. It has been reported that the positions of the Li atoms can vary depending on the synthetic conditions while those of the V, P, and O atoms comprising the rigid framework remain intact (Yang et al., 2010). The Li positions found from the present single-crystal study are consistent with those reported by Patoux et al.(2003) and of a sample treated with microwave radiation at 1123 K for 3 min by Yang et al. (2010). According to bond valence sum calculations (Adams, 2001) for the various structure determinations, our study gives the lowest global instability index, Gii = 0.027. The Gii values of structures with Li positions similar to ours are likewise relatively low (i.e. 0.079; Yang et al., 2010), while those with Li positions considerably different as those from the present structures are much higher (i.e. 0.175; Yin et al., 2003).

The classical charge balance of the title compound can be represented as [Li+]3[V3+]2[P5+]3[O2-]12.

Experimental

The title compound, Li3V2(PO4)3, was prepared by the reaction of the elements with the use of the reactive halide-flux technique. A combination of the pure elements, Nb powder (Alfa Aesar 99.8%), V powder (STREM CHEMICALS 99.5%) and P powder (CERAC 99.5%) were mixed in a fused silica tube in a molar ratio of Nb:V:P = 1:1:3 and then LiCl (Sigma-Aldrich 99%) was added. The mass ratio of the reactants and the halide was 1:5. The tube was evacuated to 0.133 Pa, sealed, and heated gradually (150 K/h) to 1123 K, where it was kept for 12 h. The tube was cooled to room temperature at a rate of 3 K/h. The excess halide was removed with water and colourless block-shaped crystals were obtained. The crystals are stable in air and water. A qualitative X-ray fluorescence analysis of selected crystal indicated the presence of V, P, and O. The composition of the compound was determined by single-crystal X-ray diffraction.

Refinement

Although all the previous structural studies of Li3V2(PO4)3 have been performed in space group settings P<ι>1121/n<ι> or P<ι>121/n<ι>1 of space group no. 14, we have chosen the standard setting, P<ι>121/c<ι>1, for this and future studies. For the comparison between the different settings in this and the previous studies, the fractional coordinates transformed to the standard setting for the various entries in the ICSD (2012) can be used. The highest peak (0.58 e/Å-3) and the deepest hole (-0.49 e/ Å-3) are 0.68 Å and 0.77 Å from the atom O12 and P1, respectively.

Figures

Fig. 1.

Fig. 1.

A view showing the local coordination environments of the V and P atoms with the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes are as given in Table 1.

Fig. 2.

Fig. 2.

View of Li3V2(PO4)3 down the b axis. VO6 octahedra are shown in blue and PO4 tetrahedra are shown in pink.

Crystal data

Li3V2(PO4)3 F(000) = 784
Mr = 407.61 Dx = 3.03 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.6201 (4) Å Cell parameters from 5732 reflections
b = 8.6013 (4) Å θ = 3.4–27.6°
c = 14.7465 (7) Å µ = 2.70 mm1
β = 125.204 (3)° T = 290 K
V = 893.39 (7) Å3 Block, colourless
Z = 4 0.08 × 0.04 × 0.04 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 1772 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
ω scans θmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −11→10
Tmin = 0.741, Tmax = 1.000 k = −10→11
8328 measured reflections l = −19→19
2031 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Primary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.024 Secondary atom site location: difference Fourier map
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0223P)2 + 1.8904P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
2031 reflections Δρmax = 0.58 e Å3
181 parameters Δρmin = −0.49 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Li1 0.1133 (8) 0.5883 (7) 0.1934 (4) 0.0266 (12)
Li2 0.1891 (9) 0.1919 (7) 0.2599 (5) 0.0356 (15)
Li3 0.4730 (7) 0.2213 (6) 0.1767 (4) 0.0186 (10)
V1 0.13814 (6) 0.52846 (5) 0.38977 (4) 0.00672 (11)
V2 0.36217 (6) 0.53898 (5) 0.11037 (3) 0.00643 (11)
P1 0.04417 (9) 0.25109 (7) 0.00782 (5) 0.00655 (14)
P2 0.45782 (9) 0.39759 (8) 0.35181 (5) 0.00672 (14)
P3 0.75192 (9) 0.38467 (7) 0.14738 (5) 0.00638 (14)
O1 0.0267 (3) 0.1788 (2) 0.09643 (16) 0.0126 (4)
O2 0.0361 (3) 0.3649 (2) 0.42742 (16) 0.0150 (4)
O3 0.0850 (2) 0.0021 (2) 0.28038 (15) 0.0102 (4)
O4 0.1152 (3) 0.6330 (2) 0.06577 (16) 0.0111 (4)
O5 0.1785 (3) 0.7151 (2) 0.31962 (15) 0.0109 (4)
O6 0.2392 (2) 0.3319 (2) 0.07040 (16) 0.0112 (4)
O7 0.2789 (3) 0.3861 (2) 0.35185 (16) 0.0125 (4)
O8 0.3675 (3) 0.5514 (2) 0.54043 (16) 0.0171 (4)
O9 0.4764 (3) 0.2357 (2) 0.31413 (15) 0.0099 (4)
O10 0.5906 (3) 0.0200 (2) 0.23807 (15) 0.0116 (4)
O11 0.5994 (3) 0.4098 (2) 0.16881 (15) 0.0110 (4)
O12 0.6748 (3) 0.4125 (2) 0.02723 (15) 0.0128 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Li1 0.030 (3) 0.038 (3) 0.017 (3) −0.008 (3) 0.017 (2) −0.005 (2)
Li2 0.042 (3) 0.030 (3) 0.022 (3) −0.020 (3) 0.010 (3) −0.001 (2)
Li3 0.018 (2) 0.016 (2) 0.021 (3) 0.003 (2) 0.011 (2) 0.004 (2)
V1 0.0067 (2) 0.0061 (2) 0.0080 (2) −0.00005 (16) 0.00464 (17) 0.00055 (15)
V2 0.0069 (2) 0.0060 (2) 0.0073 (2) −0.00006 (15) 0.00458 (17) 0.00017 (15)
P1 0.0062 (3) 0.0055 (3) 0.0086 (3) 0.0001 (2) 0.0046 (2) 0.0000 (2)
P2 0.0066 (3) 0.0062 (3) 0.0073 (3) 0.0005 (2) 0.0040 (2) −0.0001 (2)
P3 0.0063 (3) 0.0058 (3) 0.0078 (3) −0.0002 (2) 0.0046 (2) −0.0005 (2)
O1 0.0118 (9) 0.0150 (9) 0.0122 (9) −0.0020 (7) 0.0076 (8) 0.0018 (8)
O2 0.0147 (9) 0.0146 (10) 0.0143 (10) −0.0023 (8) 0.0076 (8) 0.0053 (8)
O3 0.0106 (8) 0.0081 (8) 0.0093 (9) 0.0027 (7) 0.0042 (7) 0.0009 (7)
O4 0.0104 (8) 0.0107 (9) 0.0133 (9) 0.0034 (7) 0.0074 (8) 0.0015 (7)
O5 0.0163 (9) 0.0075 (9) 0.0119 (9) −0.0022 (7) 0.0099 (8) −0.0003 (7)
O6 0.0081 (8) 0.0088 (9) 0.0140 (10) −0.0015 (7) 0.0048 (8) −0.0002 (7)
O7 0.0128 (9) 0.0105 (9) 0.0191 (10) −0.0010 (7) 0.0120 (8) −0.0031 (8)
O8 0.0094 (9) 0.0205 (10) 0.0131 (10) −0.0009 (8) 0.0016 (8) −0.0051 (8)
O9 0.0133 (9) 0.0062 (8) 0.0106 (9) 0.0022 (7) 0.0071 (7) 0.0002 (7)
O10 0.0173 (9) 0.0088 (9) 0.0110 (9) −0.0016 (7) 0.0096 (8) −0.0016 (7)
O11 0.0109 (8) 0.0124 (9) 0.0119 (9) 0.0027 (7) 0.0078 (8) 0.0020 (7)
O12 0.0136 (9) 0.0155 (9) 0.0100 (9) 0.0013 (8) 0.0072 (8) 0.0014 (7)

Geometric parameters (Å, º)

Li1—O4 1.930 (6) V2—O12iv 1.9099 (19)
Li1—O5 1.940 (6) V2—O6 1.9810 (18)
Li1—O3i 2.094 (6) V2—O4 2.0012 (18)
Li1—O10ii 2.215 (6) V2—O11 2.0316 (18)
Li1—O7 2.584 (6) V2—O10ii 2.0343 (19)
Li2—O3 1.968 (6) V2—O9ii 2.0618 (18)
Li2—O1 1.974 (6) V2—Li3ii 3.032 (5)
Li2—O7 2.004 (6) P1—O2v 1.5199 (19)
Li2—O9 2.153 (7) P1—O4vi 1.5297 (19)
Li2—O5iii 2.678 (7) P1—O1 1.5310 (19)
Li3—O6 1.944 (5) P1—O6 1.5400 (18)
Li3—O10 1.946 (5) P2—O8vii 1.492 (2)
Li3—O11 1.994 (5) P2—O9 1.5419 (19)
Li3—O9 2.014 (6) P2—O7 1.5458 (18)
V1—O2 1.9040 (19) P2—O10ii 1.5497 (19)
V1—O8 1.954 (2) P3—O12 1.5101 (19)
V1—O1i 2.0163 (19) P3—O11 1.5343 (19)
V1—O7 2.0168 (18) P3—O5viii 1.5454 (19)
V1—O5 2.0450 (18) P3—O3ii 1.5506 (18)
V1—O3i 2.1172 (18)
O4—Li1—O5 131.6 (3) O2v—P1—O1 114.61 (12)
O4—Li1—O3i 135.8 (3) O4vi—P1—O1 112.35 (11)
O5—Li1—O3i 80.6 (2) O2v—P1—O6 107.88 (11)
O4—Li1—O10ii 80.9 (2) O4vi—P1—O6 110.77 (10)
O5—Li1—O10ii 95.2 (2) O1—P1—O6 106.40 (11)
O3i—Li1—O10ii 132.1 (3) O8vii—P2—O9 113.49 (11)
O4—Li1—O7 134.8 (3) O8vii—P2—O7 114.38 (12)
O5—Li1—O7 78.88 (19) O9—P2—O7 104.68 (10)
O3i—Li1—O7 71.26 (18) O8vii—P2—O10ii 108.68 (12)
O10ii—Li1—O7 61.21 (16) O9—P2—O10ii 109.75 (10)
O3—Li2—O1 94.3 (3) O7—P2—O10ii 105.50 (11)
O3—Li2—O7 128.3 (4) O12—P3—O11 111.68 (11)
O1—Li2—O7 126.8 (3) O12—P3—O5viii 110.34 (11)
O3—Li2—O9 128.1 (3) O11—P3—O5viii 106.92 (10)
O1—Li2—O9 108.5 (3) O12—P3—O3ii 108.32 (11)
O7—Li2—O9 71.9 (2) O11—P3—O3ii 108.17 (11)
O3—Li2—P2 146.7 (3) O5viii—P3—O3ii 111.42 (10)
O1—Li2—P2 117.9 (3) P1—O1—Li2 132.1 (2)
O7—Li2—P2 36.57 (11) P1—O1—V1iii 140.21 (12)
O9—Li2—P2 36.48 (10) Li2—O1—V1iii 87.60 (18)
O3—Li2—O5iii 66.43 (19) P1ix—O2—V1 153.03 (13)
O1—Li2—O5iii 69.03 (19) P3viii—O3—Li2 109.4 (2)
O7—Li2—O5iii 97.6 (3) P3viii—O3—Li1iii 128.10 (19)
O9—Li2—O5iii 165.3 (3) Li2—O3—Li1iii 103.1 (3)
P2—Li2—O5iii 130.8 (3) P3viii—O3—V1iii 136.75 (11)
O6—Li3—O10 146.1 (3) Li2—O3—V1iii 84.99 (19)
O6—Li3—O11 84.4 (2) Li1iii—O3—V1iii 84.27 (16)
O10—Li3—O11 126.5 (3) P1vi—O4—Li1 108.2 (2)
O6—Li3—O9 100.9 (2) P1vi—O4—V2 147.84 (12)
O10—Li3—O9 83.4 (2) Li1—O4—V2 101.8 (2)
O11—Li3—O9 108.5 (3) P3ii—O5—Li1 132.7 (2)
O2—V1—O8 94.48 (9) P3ii—O5—V1 136.88 (11)
O2—V1—O1i 88.48 (8) Li1—O5—V1 90.28 (19)
O8—V1—O1i 97.50 (8) P3ii—O5—Li2i 110.77 (16)
O2—V1—O7 94.88 (8) Li1—O5—Li2i 85.6 (2)
O8—V1—O7 90.02 (8) V1—O5—Li2i 70.11 (15)
O1i—V1—O7 171.50 (8) P1—O6—Li3 121.90 (18)
O2—V1—O5 165.80 (8) P1—O6—V2 142.76 (11)
O8—V1—O5 98.04 (8) Li3—O6—V2 94.12 (17)
O1i—V1—O5 83.28 (8) P2—O7—Li2 92.9 (2)
O7—V1—O5 91.80 (8) P2—O7—V1 136.13 (12)
O2—V1—O3i 90.55 (8) Li2—O7—V1 129.4 (2)
O8—V1—O3i 172.14 (8) P2—O7—Li1 89.28 (15)
O1i—V1—O3i 88.65 (8) Li2—O7—Li1 98.8 (2)
O7—V1—O3i 83.53 (8) V1—O7—Li1 74.63 (14)
O5—V1—O3i 77.75 (7) P2vii—O8—V1 168.23 (14)
O12iv—V2—O6 98.48 (8) P2—O9—Li3 118.30 (18)
O12iv—V2—O4 93.92 (8) P2—O9—V2viii 136.43 (11)
O6—V2—O4 88.86 (8) Li3—O9—V2viii 96.15 (16)
O12iv—V2—O11 94.63 (8) P2—O9—Li2 87.4 (2)
O6—V2—O11 82.50 (8) Li3—O9—Li2 105.6 (2)
O4—V2—O11 168.64 (8) V2viii—O9—Li2 109.31 (19)
O12iv—V2—O10ii 171.87 (8) P2viii—O10—Li3 113.29 (19)
O6—V2—O10ii 89.34 (8) P2viii—O10—V2viii 141.17 (12)
O4—V2—O10ii 83.96 (8) Li3—O10—V2viii 99.23 (17)
O11—V2—O10ii 88.56 (8) P2viii—O10—Li1viii 103.99 (17)
O12iv—V2—O9ii 92.40 (8) Li3—O10—Li1viii 97.5 (2)
O6—V2—O9ii 167.76 (8) V2viii—O10—Li1viii 91.67 (15)
O4—V2—O9ii 96.01 (8) P3—O11—Li3 117.36 (18)
O11—V2—O9ii 91.09 (7) P3—O11—V2 139.65 (12)
O10ii—V2—O9ii 80.05 (7) Li3—O11—V2 91.10 (16)
O2v—P1—O4vi 104.81 (11) P3—O12—V2iv 166.44 (13)

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) −x+1, −y+1, −z; (v) x, −y+1/2, z−1/2; (vi) −x, −y+1, −z; (vii) −x+1, −y+1, −z+1; (viii) −x+1, y−1/2, −z+1/2; (ix) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2716).

References

  1. Adams, St. (2001). Acta Cryst. B57, 278–287. [DOI] [PubMed]
  2. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Fu, P., Zhao, Y., Dong, Y. & Hou, X. (2010). J. Phys. Chem. Solids, 71, 394–399.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. ICSD (2012). Inorganic Crystal Structure Database FIZ-Karlsruhe, Germany. http://www.fiz-karlsruhe.de/fiz/products/icsd/welcome.html
  7. Kuo, H. T., Bagkar, N. C., Liu, R.-S., Shen, C. H., Shy, D. S., Xing, X. K., Lee, J.-F. & Chen, J.-M. (2008). J. Phys. Chem. B, 112, 11250–11257. [DOI] [PubMed]
  8. Patoux, S., Wurm, C., Morcrette, M., Rousse, G. & Masquelier, C. (2003). J. Power Sources, 119, 278–284.
  9. Rigaku (2006). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  10. Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Yang, G., Ji, H. M., Liu, H., Qian, B. & Jiang, X. (2010). Electrochim. Acta, 55, 3669–3680.
  13. Yin, S. C., Grondey, H., Strobel, P., Anne, M. & Nazar, L. F. (2003). J. Am. Chem. Soc. 125, 10402–10411. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813001499/wm2716sup1.cif

e-69-00i11-sup1.cif (16.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001499/wm2716Isup2.hkl

e-69-00i11-Isup2.hkl (97.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES