Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 9;69(Pt 2):m79–m80. doi: 10.1107/S1600536812051227

(4′-Ethynyl-2,2′:6′,2′′-terpyridine)(2,2′:6′,2′′-terpyridine)­ruthenium(II) bis­(hexa­fluoridophosphate) acetonitrile disolvate

Weizhong Chen a, Francisca N Rein a, Brian L Scott a, Reginaldo C Rocha a,*
PMCID: PMC3569181  PMID: 23424425

Abstract

The title heteroleptic bis­-terpyridine complex, [Ru(C15H11N3)(C17H11N3)](PF6)2·2CH3CN, crystallized from an acetonitrile solution as a salt containing two hexa­fluoridophosphate counter-ions and two acetonitrile solvent mol­ecules. The RuII atom has a distorted octa­hedral geometry due to the restricted bite angle [157.7 (3)°] of the two mer-arranged N,N′,N′′-tridendate ligands, viz. 2,2′:6′,2′′-terpyridine (tpy) and 4′-ethynyl-2,2′:6′,2′′-terpyridine (tpy′), which are essentially perpendicular to each other, with a dihedral angle of 87.75 (12)° between their terpyridyl planes. The rod-like acetyl­ene group lies in the same plane as its adjacent terpyridyl moiety, with a maximum deviation of only 0.071 (11) Å from coplanarity with the pyridine rings. The mean Ru—N bond length involving the outer N atoms trans to each other is 2.069 (6) Å at tpy and 2.070 (6) Å at tpy′. The Ru—N bond length involving the central N atom is 1.964 (6) Å at tpy and 1.967 (6) Å at tpy′. Two of the three counter anions were refined as half-occupied.

Related literature  

For the crystal structure of a RuII–terpyridine complex containing the {Ru(tpy–C C)} fragment, see: Ruben et al. (2008). For a comparative discussion, see the Comment section in the Supplementary materials. For bond lengths and angles in related tpy complexes, see: Lashgari et al. (1999); Scudder et al. (2005). For the preparation of the starting materials, see: Benniston et al. (2005); Grosshenny et al. (1997); Sullivan et al. (1980); Ziessel et al. (2004). For general properties of this complex and related systems, see: Grosshenny et al. (1996); Hammarström & Johansson (2010); Ruther et al. (2011); Ziessel et al. (2004).graphic file with name e-69-00m79-scheme1.jpg

Experimental  

Crystal data  

  • [Ru(C15H11N3)(C17H11N3)](PF6)2·2C2H3N

  • M r = 963.67

  • Triclinic, Inline graphic

  • a = 8.704 (2) Å

  • b = 8.860 (2) Å

  • c = 27.277 (7) Å

  • α = 96.876 (4)°

  • β = 95.619 (3)°

  • γ = 93.023 (3)°

  • V = 2073.9 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 140 K

  • 0.10 × 0.08 × 0.06 mm

Data collection  

  • Bruker D8 with APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.947, T max = 0.968

  • 19870 measured reflections

  • 7496 independent reflections

  • 5137 reflections with I > 2σ(I)

  • R int = 0.081

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.084

  • wR(F 2) = 0.228

  • S = 1.25

  • 7496 reflections

  • 596 parameters

  • H-atom parameters constrained

  • Δρmax = 1.75 e Å−3

  • Δρmin = −0.94 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051227/sj5287sup1.cif

e-69-00m79-sup1.cif (38.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051227/sj5287Isup2.hkl

e-69-00m79-Isup2.hkl (366.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Support by the US Department of Energy through the Laboratory Directed Research and Development (LDRD) program at LANL is gratefully acknowledged.

supplementary crystallographic information

Comment

The compound [RuII(tpy)(tpy')](PF6)2×2MeCN crystallized in the triclinic space group (P1) from an acetonitrile solution. The crystal structure of its dication [Ru(tpy)(tpy')]2+ (I) is reported here for the first time, despite its well demonstrated relevance as a metallo-synthon unit into the construction of alkyne-bridged polyad arrays with optical/electronic applications (for example, see: Benniston et al., 2005; Grosshenny et al., 1996; Ziessel et al., 2004) and, more recently, as interesting precursors to optically/electrochemically active interfacial assemblies via surface click chemistry at the alkynyl group (for example, see: Ruther et al., 2011).

The only other crystallographically characterized compound featuring the {Ru(tpy–C≡C)} fragment is the homoleptic complex [RuII(tpy")2](PF6)2 (II; tpy" = S-(4-[2,2':6',2"]terpyridin-4'-ylethynyl-phenyl ester), which was applied in studies of molecular electronics involving charge transport through single molecules (II) in break-junction configurations (Ruben et al., 2008). In this case, the compound also crystallized in the triclinic space group (P1). In II, the two elongated ligands pointed along the long axis of the complex, with only slight distortion across the metal center (N–Ru–N angle: 178.9 (4)°). The mean Ru—N bond distances (1.966 (8) Å for the central nitrogen and 2.066 (10) Å for the outer nitrogen atoms trans to each other) as well as the tpy" bite angles (158.3 (4)°) are very similar to those observed for I.

These distances and angles are also in very good agreement with typical values reported for [Ru(tpy)2]2+ (e.g., Lashgari et al., 1999; Scudder et al., 2005). The bite angle of terpyridines is well known to be far from the ideal 180° due to the unfavorable N,N,N geometric configuration of the mer-terdentate ligand (Hammarström & Johansson, 2010). In I, the two terpyridyl ligands are approximately planar, with only a slight bending towards the outer ring atoms (maximum deviation from planarity: 0.093 (10) Å for atom C13 at tpy and 0.110 (8) Å for atom C30 at tpy'). The acetylenic group (–C31≡C32–H32) lies along the main axis passing through the metal center as well as in the same plane as its adjacent terpyridyl moiety, with a maximum deviation of only 0.071 (11) Å (C32) from coplanarity. The length of the triple bond between C31 and C32 is 1.175 (13) Å.

Experimental

The compound [Ru(tpy)(tpy')](PF6)2 was prepared from the precursor [Ru(tpy)(tpy'-TMS)](PF6)2 (tpy'-TMS = 4'-trimethylsilylethynyl-(2,2':6',2"-terpy)) as described in the literature (Benniston et al., 2005). Also synthesized according to reported procedures were the starting materials Ru(tpy)Cl3 (Sullivan et al., 1980) and tpy'-TMS (Grosshenny et al., 1997). The identity of the cation [Ru(tpy)(tpy')]2+ (I) in solution was also confirmed by electrochemical and spectroscopic methods. Single crystals suitable for X-ray analysis were grown by slow diffusion of Et2O into MeCN solutions of [Ru(tpy)(tpy')](PF6)2 in a long thin tube.

Refinement

The structure was solved by using direct methods and difference Fourier techniques. All hydrogen atom positions were idealized, and rode on the atom they were attached to. The final refinement included anisotropic temperature factors on all non-hydrogen atoms.

Two of the hexafluorophosphate anions had very large temperature factors when compared to the third. Other characterization by nuclear magnetic resonance, electronic absorption spectroscopy, and electrochemical techniques clearly support the oxidation state +2 for the Ru center. As a result, the two hexafluorophosphate anions were refined at one-half occupancy.

Figures

Fig. 1.

Fig. 1.

Figure 1. The single-crystal structure of the cation (I) in [RuII(tpy)(tpy')](PF6)2×2MeCN. Displacement ellipsoids are drawn at the 50% probability level. Except for H32, H atoms are omitted for clarity.

Crystal data

[Ru(C15H11N3)(C17H11N3)](PF6)2·2C2H3N Z = 2
Mr = 963.67 F(000) = 964
Triclinic, P1 Dx = 1.543 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.704 (2) Å Cell parameters from 1822 reflections
b = 8.860 (2) Å θ = 4.7–41.0°
c = 27.277 (7) Å µ = 0.55 mm1
α = 96.876 (4)° T = 140 K
β = 95.619 (3)° Block, orange
γ = 93.023 (3)° 0.10 × 0.08 × 0.06 mm
V = 2073.9 (10) Å3

Data collection

Bruker D8 with APEXII CCD diffractometer 7496 independent reflections
Radiation source: fine-focus sealed tube 5137 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.081
ω scans θmax = 25.3°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −10→10
Tmin = 0.947, Tmax = 0.968 k = −10→10
19870 measured reflections l = −32→32

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228 H-atom parameters constrained
S = 1.25 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
7496 reflections (Δ/σ)max < 0.001
596 parameters Δρmax = 1.75 e Å3
0 restraints Δρmin = −0.94 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.Note: Two of the hexafluorophosphate anions had very large temperature factors when compared to the third. Other characterization by nuclear magnetic resonance, electronic absorption spectroscopy, and electrochemical techniques clearly support the oxidation state +2 for the Ru center. As a result, the two hexafluorophosphate anions were refined at one-half occupancy.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ru1 0.60446 (7) 0.66280 (7) 0.71976 (2) 0.0229 (2)
P1 0.5105 (3) 0.2494 (3) 0.86893 (9) 0.0406 (6)
P2 0.0665 (4) 0.3760 (5) 0.58567 (15) 0.0223 (9) 0.50
P3 0.3376 (7) 0.9331 (5) 0.52521 (18) 0.0460 (13) 0.50
F1 0.4111 (7) 0.3779 (7) 0.8487 (2) 0.0662 (17)
F2 0.3720 (7) 0.1889 (8) 0.8960 (2) 0.083 (2)
F3 0.6136 (8) 0.1235 (7) 0.8895 (3) 0.087 (2)
F4 0.6488 (6) 0.3082 (6) 0.8399 (2) 0.0627 (16)
F5 0.5731 (8) 0.3658 (7) 0.9169 (2) 0.080 (2)
F6 0.4524 (7) 0.1353 (6) 0.8207 (2) 0.0699 (18)
F7 0.2344 (13) 0.4242 (15) 0.5732 (4) 0.071 (4) 0.50
F8 0.0213 (12) 0.3542 (11) 0.5289 (3) 0.048 (3) 0.50
F9 −0.0984 (14) 0.3277 (16) 0.5993 (4) 0.074 (4) 0.50
F10 0.1149 (13) 0.3953 (11) 0.6387 (3) 0.048 (3) 0.50
F11 0.0255 (16) 0.5450 (15) 0.5929 (5) 0.086 (4) 0.50
F12 0.1067 (14) 0.2015 (14) 0.5798 (5) 0.078 (4) 0.50
F13 0.2819 (11) 0.7699 (11) 0.5355 (4) 0.052 (3) 0.50
F14 0.4594 (13) 0.9411 (12) 0.5740 (4) 0.055 (3) 0.50
F15 0.2102 (13) 0.9903 (13) 0.5575 (4) 0.061 (3) 0.50
F16 0.3906 (14) 1.1053 (11) 0.5201 (4) 0.051 (3) 0.50
F17 0.2281 (13) 0.9269 (11) 0.4820 (5) 0.066 (4) 0.50
F18 0.4732 (18) 0.8751 (13) 0.4927 (5) 0.080 (4) 0.50
N1 0.6951 (6) 0.8758 (7) 0.7100 (2) 0.0218 (14)
N2 0.6314 (7) 0.6327 (6) 0.6487 (2) 0.0223 (14)
N3 0.5163 (7) 0.4394 (7) 0.7002 (3) 0.0306 (16)
N4 0.8136 (7) 0.5925 (6) 0.7502 (2) 0.0212 (14)
N5 0.5824 (7) 0.6975 (6) 0.7912 (2) 0.0241 (14)
N6 0.3870 (7) 0.7435 (7) 0.7184 (3) 0.0273 (15)
N7 0.9608 (12) −0.0287 (12) 0.8456 (4) 0.082 (3)
N8 0.0331 (14) 0.6614 (13) 0.9563 (4) 0.088 (3)
C1 0.7199 (8) 1.0006 (9) 0.7444 (3) 0.0273 (18)
H1 0.6942 0.9936 0.7764 0.033*
C2 0.7826 (9) 1.1392 (9) 0.7334 (3) 0.032 (2)
H2 0.7969 1.2236 0.7575 0.039*
C3 0.8230 (9) 1.1495 (8) 0.6865 (3) 0.032 (2)
H3 0.8692 1.2396 0.6788 0.039*
C4 0.7941 (9) 1.0242 (9) 0.6506 (3) 0.0291 (19)
H4 0.8165 1.0314 0.6183 0.035*
C5 0.7316 (8) 0.8874 (8) 0.6628 (3) 0.0234 (17)
C6 0.6973 (9) 0.7496 (9) 0.6277 (3) 0.0251 (17)
C7 0.7184 (11) 0.7255 (10) 0.5781 (3) 0.042 (2)
H7 0.7616 0.8050 0.5635 0.050*
C8 0.6785 (13) 0.5893 (11) 0.5496 (3) 0.056 (3)
H8 0.6959 0.5754 0.5163 0.067*
C9 0.6102 (12) 0.4699 (10) 0.5717 (3) 0.048 (3)
H9 0.5808 0.3758 0.5533 0.058*
C10 0.5881 (9) 0.4966 (8) 0.6215 (3) 0.0294 (19)
C11 0.5205 (9) 0.3899 (9) 0.6516 (3) 0.034 (2)
C12 0.4598 (11) 0.2427 (9) 0.6311 (4) 0.051 (3)
H12 0.4632 0.2099 0.5976 0.061*
C13 0.3950 (11) 0.1473 (10) 0.6612 (4) 0.061 (3)
H13 0.3528 0.0503 0.6484 0.073*
C14 0.3951 (10) 0.2002 (10) 0.7107 (4) 0.050 (3)
H14 0.3551 0.1369 0.7319 0.059*
C15 0.4541 (9) 0.3471 (9) 0.7297 (4) 0.038 (2)
H15 0.4505 0.3815 0.7631 0.046*
C16 0.9277 (8) 0.5350 (8) 0.7264 (3) 0.0251 (17)
H16 0.9201 0.5297 0.6920 0.030*
C17 1.0570 (9) 0.4828 (9) 0.7508 (3) 0.0312 (19)
H17 1.1334 0.4413 0.7328 0.037*
C18 1.0729 (9) 0.4920 (9) 0.8014 (3) 0.036 (2)
H18 1.1600 0.4586 0.8184 0.043*
C19 0.9558 (9) 0.5523 (9) 0.8265 (3) 0.033 (2)
H19 0.9635 0.5599 0.8610 0.040*
C20 0.8264 (8) 0.6019 (8) 0.8006 (3) 0.0252 (18)
C21 0.6948 (10) 0.6671 (9) 0.8251 (3) 0.0304 (19)
C22 0.6838 (11) 0.6954 (9) 0.8747 (3) 0.038 (2)
H22 0.7631 0.6723 0.8975 0.045*
C23 0.5526 (12) 0.7590 (9) 0.8908 (3) 0.041 (2)
C24 0.4340 (11) 0.7933 (9) 0.8559 (3) 0.041 (2)
H24 0.3463 0.8378 0.8662 0.049*
C25 0.4506 (9) 0.7593 (9) 0.8058 (3) 0.033 (2)
C26 0.3421 (9) 0.7893 (9) 0.7645 (3) 0.032 (2)
C27 0.2062 (9) 0.8608 (9) 0.7703 (4) 0.042 (2)
H27 0.1808 0.8962 0.8018 0.051*
C28 0.1083 (10) 0.8787 (10) 0.7282 (4) 0.053 (3)
H28 0.0161 0.9257 0.7312 0.063*
C29 0.1501 (9) 0.8255 (9) 0.6820 (4) 0.041 (2)
H29 0.0854 0.8357 0.6536 0.049*
C30 0.2887 (9) 0.7569 (9) 0.6782 (4) 0.035 (2)
H30 0.3144 0.7191 0.6470 0.042*
C31 0.5415 (13) 0.7943 (11) 0.9431 (4) 0.058 (3)
C32 0.5330 (16) 0.8213 (12) 0.9860 (4) 0.072 (4)
H32 0.5263 0.8427 1.0199 0.087*
C33 0.9607 (15) 0.0376 (19) 0.8804 (5) 0.104 (6)
C34 0.958 (2) 0.113 (4) 0.9314 (8) 0.36 (3)
H34A 0.8897 0.0544 0.9486 0.541*
H34B 0.9217 0.2132 0.9303 0.541*
H34C 1.0603 0.1207 0.9485 0.541*
C35 0.1365 (14) 0.5885 (14) 0.9648 (4) 0.063 (3)
C36 0.2593 (15) 0.4921 (15) 0.9767 (5) 0.084 (4)
H36A 0.3438 0.5523 0.9962 0.126*
H36B 0.2941 0.4450 0.9465 0.126*
H36C 0.2220 0.4148 0.9952 0.126*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.0183 (3) 0.0179 (3) 0.0337 (4) −0.0009 (2) 0.0022 (3) 0.0091 (3)
P1 0.0455 (14) 0.0296 (13) 0.0456 (15) 0.0006 (11) −0.0040 (11) 0.0080 (11)
P2 0.0167 (19) 0.025 (2) 0.027 (2) 0.0045 (16) 0.0036 (16) 0.0105 (17)
P3 0.072 (4) 0.029 (3) 0.035 (3) −0.003 (2) 0.010 (3) −0.005 (2)
F1 0.055 (4) 0.064 (4) 0.086 (4) 0.028 (3) 0.006 (3) 0.025 (3)
F2 0.067 (4) 0.104 (6) 0.080 (5) −0.027 (4) 0.019 (3) 0.029 (4)
F3 0.072 (5) 0.057 (4) 0.134 (6) 0.011 (3) −0.018 (4) 0.044 (4)
F4 0.054 (4) 0.055 (4) 0.083 (4) −0.006 (3) 0.013 (3) 0.021 (3)
F5 0.111 (6) 0.068 (4) 0.052 (4) −0.030 (4) −0.008 (4) 0.002 (3)
F6 0.092 (5) 0.045 (4) 0.065 (4) −0.021 (3) 0.003 (3) −0.007 (3)
F7 0.055 (8) 0.095 (10) 0.067 (8) −0.012 (7) −0.004 (6) 0.038 (7)
F8 0.076 (8) 0.055 (7) 0.009 (5) −0.040 (6) 0.004 (4) 0.008 (4)
F9 0.062 (8) 0.101 (10) 0.077 (9) 0.020 (7) 0.026 (7) 0.056 (8)
F10 0.083 (8) 0.033 (6) 0.036 (6) 0.015 (5) 0.047 (5) 0.001 (4)
F11 0.085 (10) 0.062 (9) 0.099 (10) 0.021 (7) −0.043 (8) 0.001 (7)
F12 0.067 (8) 0.060 (8) 0.098 (10) 0.021 (7) −0.024 (7) −0.008 (7)
F13 0.035 (6) 0.041 (6) 0.072 (8) −0.027 (5) 0.016 (5) −0.023 (5)
F14 0.073 (8) 0.049 (7) 0.047 (7) 0.030 (6) 0.006 (6) 0.006 (5)
F15 0.049 (7) 0.059 (8) 0.073 (8) 0.004 (6) −0.006 (6) 0.013 (6)
F16 0.080 (9) 0.035 (6) 0.035 (6) −0.021 (6) −0.003 (6) 0.002 (5)
F17 0.060 (7) 0.020 (5) 0.109 (10) −0.015 (5) −0.032 (7) 0.019 (6)
F18 0.113 (12) 0.050 (8) 0.070 (9) −0.029 (8) 0.033 (8) −0.021 (6)
N1 0.014 (3) 0.018 (3) 0.034 (4) 0.006 (2) −0.001 (3) 0.003 (3)
N2 0.017 (3) 0.013 (3) 0.036 (4) −0.001 (2) −0.008 (3) 0.008 (3)
N3 0.023 (4) 0.025 (4) 0.043 (4) −0.009 (3) −0.007 (3) 0.015 (3)
N4 0.019 (3) 0.011 (3) 0.032 (4) −0.001 (2) −0.002 (3) 0.001 (3)
N5 0.026 (3) 0.011 (3) 0.037 (4) 0.004 (3) 0.009 (3) 0.007 (3)
N6 0.015 (3) 0.020 (3) 0.048 (4) −0.004 (3) −0.001 (3) 0.012 (3)
N7 0.078 (7) 0.084 (8) 0.079 (8) −0.020 (6) 0.031 (6) −0.024 (6)
N8 0.096 (9) 0.098 (9) 0.065 (7) 0.019 (7) −0.022 (6) 0.009 (6)
C1 0.022 (4) 0.022 (4) 0.036 (5) 0.003 (3) 0.002 (3) 0.000 (4)
C2 0.035 (5) 0.024 (5) 0.037 (5) 0.013 (4) −0.002 (4) 0.001 (4)
C3 0.029 (4) 0.010 (4) 0.055 (6) −0.004 (3) −0.007 (4) 0.007 (4)
C4 0.025 (4) 0.028 (5) 0.036 (5) −0.001 (3) 0.000 (4) 0.016 (4)
C5 0.020 (4) 0.021 (4) 0.030 (4) 0.003 (3) 0.004 (3) 0.004 (3)
C6 0.026 (4) 0.023 (4) 0.026 (4) 0.002 (3) 0.000 (3) 0.005 (3)
C7 0.063 (6) 0.024 (5) 0.039 (5) −0.005 (4) 0.004 (5) 0.016 (4)
C8 0.100 (9) 0.043 (6) 0.022 (5) 0.004 (6) −0.002 (5) 0.000 (4)
C9 0.080 (7) 0.021 (5) 0.037 (6) −0.003 (5) −0.023 (5) 0.003 (4)
C10 0.035 (5) 0.014 (4) 0.037 (5) −0.003 (3) −0.013 (4) 0.006 (3)
C11 0.030 (5) 0.014 (4) 0.057 (6) −0.012 (3) −0.015 (4) 0.018 (4)
C12 0.059 (6) 0.018 (5) 0.070 (7) −0.007 (4) −0.031 (5) 0.012 (4)
C13 0.056 (6) 0.024 (5) 0.096 (9) −0.025 (5) −0.045 (6) 0.035 (5)
C14 0.041 (6) 0.027 (5) 0.079 (8) −0.015 (4) −0.021 (5) 0.031 (5)
C15 0.017 (4) 0.033 (5) 0.066 (6) −0.011 (4) −0.010 (4) 0.027 (4)
C16 0.023 (4) 0.011 (4) 0.041 (5) −0.005 (3) 0.006 (4) 0.003 (3)
C17 0.017 (4) 0.020 (4) 0.056 (6) 0.002 (3) 0.004 (4) 0.004 (4)
C18 0.018 (4) 0.029 (5) 0.059 (6) 0.005 (3) −0.007 (4) 0.003 (4)
C19 0.037 (5) 0.028 (5) 0.033 (5) 0.005 (4) −0.003 (4) 0.000 (4)
C20 0.021 (4) 0.013 (4) 0.043 (5) 0.000 (3) −0.001 (4) 0.009 (3)
C21 0.038 (5) 0.024 (4) 0.028 (5) −0.006 (4) 0.000 (4) 0.006 (3)
C22 0.052 (6) 0.027 (5) 0.035 (5) −0.002 (4) 0.002 (4) 0.011 (4)
C23 0.071 (7) 0.020 (4) 0.036 (5) 0.000 (4) 0.019 (5) 0.006 (4)
C24 0.049 (6) 0.027 (5) 0.053 (6) 0.004 (4) 0.028 (5) 0.012 (4)
C25 0.028 (4) 0.021 (4) 0.053 (6) 0.001 (3) 0.015 (4) 0.010 (4)
C26 0.030 (4) 0.020 (4) 0.049 (5) −0.004 (3) 0.015 (4) 0.013 (4)
C27 0.026 (5) 0.024 (5) 0.081 (7) 0.000 (4) 0.015 (5) 0.015 (5)
C28 0.024 (5) 0.030 (5) 0.111 (9) 0.003 (4) 0.017 (6) 0.025 (6)
C29 0.019 (4) 0.021 (5) 0.085 (7) −0.008 (3) −0.008 (5) 0.033 (5)
C30 0.026 (4) 0.015 (4) 0.066 (6) −0.003 (3) 0.000 (4) 0.017 (4)
C31 0.083 (8) 0.039 (6) 0.058 (7) 0.019 (6) 0.028 (6) 0.011 (5)
C32 0.134 (12) 0.046 (7) 0.047 (7) 0.035 (7) 0.036 (7) 0.013 (5)
C33 0.055 (8) 0.147 (15) 0.089 (11) 0.011 (9) −0.007 (7) −0.058 (10)
C34 0.15 (2) 0.60 (6) 0.23 (3) 0.16 (3) −0.099 (19) −0.33 (3)
C35 0.072 (8) 0.077 (8) 0.036 (6) 0.026 (7) −0.009 (5) −0.003 (5)
C36 0.082 (10) 0.085 (10) 0.085 (9) 0.004 (8) 0.004 (7) 0.013 (7)

Geometric parameters (Å, º)

Ru1—N2 1.964 (6) C8—C9 1.411 (13)
Ru1—N5 1.967 (6) C9—C10 1.385 (12)
Ru1—N6 2.057 (6) C10—C11 1.461 (11)
Ru1—N1 2.064 (6) C11—C12 1.410 (11)
Ru1—N3 2.073 (6) C12—C13 1.384 (13)
Ru1—N4 2.083 (6) C13—C14 1.374 (14)
P1—F2 1.577 (6) C14—C15 1.394 (12)
P1—F6 1.583 (6) C16—C17 1.381 (10)
P1—F1 1.585 (6) C17—C18 1.364 (11)
P1—F3 1.588 (6) C18—C19 1.378 (11)
P1—F5 1.596 (6) C19—C20 1.389 (11)
P1—F4 1.602 (6) C20—C21 1.489 (11)
P2—F10 1.453 (11) C21—C22 1.360 (11)
P2—F8 1.547 (9) C22—C23 1.386 (12)
P2—F11 1.551 (13) C23—C24 1.404 (13)
P2—F9 1.568 (12) C23—C31 1.438 (13)
P2—F7 1.581 (12) C24—C25 1.388 (11)
P2—F12 1.597 (12) C25—C26 1.457 (12)
P3—F17 1.435 (12) C26—C27 1.385 (11)
P3—F15 1.551 (13) C27—C28 1.390 (13)
P3—F13 1.567 (11) C28—C29 1.381 (13)
P3—F16 1.597 (11) C29—C30 1.387 (11)
P3—F14 1.610 (12) C31—C32 1.175 (13)
P3—F18 1.613 (15) C33—C34 1.47 (2)
F16—F18i 1.278 (16) C35—C36 1.439 (16)
F18—F16i 1.278 (16) C1—H1 0.93
N1—C1 1.355 (9) C2—H2 0.93
N1—C5 1.370 (9) C3—H3 0.93
N2—C10 1.353 (9) C4—H4 0.93
N2—C6 1.368 (9) C7—H7 0.93
N3—C15 1.344 (10) C8—H8 0.93
N3—C11 1.350 (10) C9—H9 0.93
N4—C16 1.330 (9) C12—H12 0.93
N4—C20 1.361 (9) C13—H13 0.93
N5—C21 1.338 (10) C14—H14 0.93
N5—C25 1.370 (10) C15—H15 0.93
N6—C30 1.344 (10) C16—H16 0.93
N6—C26 1.373 (10) C17—H17 0.93
N7—C33 1.054 (13) C18—H18 0.93
N8—C35 1.157 (14) C19—H19 0.93
C1—C2 1.395 (11) C22—H22 0.93
C2—C3 1.371 (11) C24—H24 0.93
C3—C4 1.383 (11) C27—H27 0.93
C4—C5 1.392 (10) C28—H28 0.93
C5—C6 1.456 (10) C29—H29 0.93
C6—C7 1.376 (11) C30—H30 0.93
C7—C8 1.363 (12) C32—H32 0.93
N2—Ru1—N5 178.3 (3) N2—C6—C7 118.3 (7)
N2—Ru1—N6 101.3 (3) N2—C6—C5 112.5 (6)
N5—Ru1—N6 79.4 (3) C7—C6—C5 129.1 (7)
N2—Ru1—N1 79.0 (2) C8—C7—C6 122.4 (8)
N5—Ru1—N1 99.5 (2) C7—C8—C9 118.6 (9)
N6—Ru1—N1 89.9 (2) C10—C9—C8 118.2 (8)
N2—Ru1—N3 78.8 (3) N2—C10—C9 121.4 (7)
N5—Ru1—N3 102.6 (3) N2—C10—C11 111.3 (7)
N6—Ru1—N3 92.4 (2) C9—C10—C11 127.3 (7)
N1—Ru1—N3 157.7 (3) N3—C11—C12 121.0 (8)
N2—Ru1—N4 100.9 (2) N3—C11—C10 117.0 (7)
N5—Ru1—N4 78.3 (2) C12—C11—C10 122.1 (9)
N6—Ru1—N4 157.7 (3) C13—C12—C11 119.6 (10)
N1—Ru1—N4 94.5 (2) C14—C13—C12 118.0 (9)
N3—Ru1—N4 91.7 (2) C13—C14—C15 121.1 (9)
F2—P1—F6 90.3 (4) N3—C15—C14 120.6 (9)
F2—P1—F1 91.5 (4) N4—C16—C17 122.4 (8)
F6—P1—F1 90.6 (4) C18—C17—C16 120.1 (8)
F2—P1—F3 89.5 (4) C17—C18—C19 118.0 (8)
F6—P1—F3 90.3 (4) C18—C19—C20 120.4 (8)
F1—P1—F3 178.7 (4) N4—C20—C19 120.6 (7)
F2—P1—F5 91.2 (4) N4—C20—C21 115.9 (6)
F6—P1—F5 178.4 (4) C19—C20—C21 123.5 (7)
F1—P1—F5 89.4 (4) N5—C21—C22 122.1 (8)
F3—P1—F5 89.7 (4) N5—C21—C20 110.8 (7)
F2—P1—F4 178.3 (4) C22—C21—C20 127.0 (8)
F6—P1—F4 88.0 (3) C21—C22—C23 119.0 (8)
F1—P1—F4 88.2 (3) C22—C23—C24 119.8 (8)
F3—P1—F4 90.8 (4) C22—C23—C31 119.7 (9)
F5—P1—F4 90.4 (4) C24—C23—C31 120.5 (9)
F10—P2—F8 177.8 (6) C25—C24—C23 118.6 (8)
F10—P2—F11 86.5 (6) N5—C25—C24 120.0 (8)
F8—P2—F11 94.6 (7) N5—C25—C26 113.5 (7)
F10—P2—F9 86.5 (6) C24—C25—C26 126.4 (8)
F8—P2—F9 95.4 (6) N6—C26—C27 121.9 (8)
F11—P2—F9 89.2 (8) N6—C26—C25 114.4 (7)
F10—P2—F7 92.1 (6) C27—C26—C25 123.7 (8)
F8—P2—F7 85.9 (6) C26—C27—C28 118.8 (9)
F11—P2—F7 91.1 (8) C29—C28—C27 119.0 (8)
F9—P2—F7 178.6 (6) C28—C29—C30 119.9 (9)
F10—P2—F12 92.2 (6) N6—C30—C29 121.8 (9)
F8—P2—F12 86.8 (6) C32—C31—C23 179.1 (11)
F11—P2—F12 178.3 (8) N7—C33—C34 173 (2)
F9—P2—F12 89.6 (7) N8—C35—C36 176.8 (15)
F7—P2—F12 90.1 (7) N1—C1—H1 119
F17—P3—F15 88.9 (8) C2—C1—H1 119
F17—P3—F13 92.5 (6) C1—C2—H2 121
F15—P3—F13 85.6 (6) C3—C2—H2 120
F17—P3—F16 90.7 (6) C2—C3—H3 121
F15—P3—F16 89.8 (7) C4—C3—H3 120
F13—P3—F16 174.3 (6) C3—C4—H4 120
F17—P3—F14 179.5 (8) C5—C4—H4 120
F15—P3—F14 90.6 (6) C6—C7—H7 119
F13—P3—F14 87.7 (6) C8—C7—H7 119
F16—P3—F14 89.1 (6) C7—C8—H8 121
F17—P3—F18 92.4 (8) C9—C8—H8 121
F15—P3—F18 178.6 (8) C8—C9—H9 121
F13—P3—F18 94.8 (6) C10—C9—H9 121
F16—P3—F18 89.8 (6) C11—C12—H12 120
F14—P3—F18 88.1 (7) C13—C12—H12 120
F18i—F16—P3 115.0 (10) C12—C13—H13 121
F16i—F18—P3 149.8 (10) C14—C13—H13 121
C1—N1—C5 118.6 (6) C13—C14—H14 120
C1—N1—Ru1 127.3 (5) C15—C14—H14 119
C5—N1—Ru1 114.1 (5) N3—C15—H15 120
C10—N2—C6 121.0 (7) C14—C15—H15 120
C10—N2—Ru1 119.9 (5) N4—C16—H16 119
C6—N2—Ru1 119.1 (5) C17—C16—H16 119
C15—N3—C11 119.8 (7) C16—C17—H17 120
C15—N3—Ru1 127.2 (6) C18—C17—H17 120
C11—N3—Ru1 113.0 (5) C17—C18—H18 121
C16—N4—C20 118.5 (6) C19—C18—H18 121
C16—N4—Ru1 127.9 (5) C18—C19—H19 120
C20—N4—Ru1 113.5 (5) C20—C19—H19 120
C21—N5—C25 120.5 (7) C21—C22—H22 121
C21—N5—Ru1 121.4 (5) C23—C22—H22 120
C25—N5—Ru1 118.1 (5) C23—C24—H24 121
C30—N6—C26 118.4 (7) C25—C24—H24 121
C30—N6—Ru1 127.3 (6) C26—C27—H27 121
C26—N6—Ru1 114.4 (5) C28—C27—H27 121
N1—C1—C2 122.2 (7) C27—C28—H28 120
C3—C2—C1 119.2 (7) C29—C28—H28 121
C2—C3—C4 119.2 (7) C28—C29—H29 120
C3—C4—C5 120.3 (7) C30—C29—H29 120
N1—C5—C4 120.6 (7) N6—C30—H30 119
N1—C5—C6 115.2 (6) C29—C30—H30 119
C4—C5—C6 124.2 (7) C31—C32—H32 180

Symmetry code: (i) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5287).

References

  1. Benniston, A. C., Harriman, A., Li, P. & Sams, C. A. (2005). J. Am. Chem. Soc. 127, 2553–2564. [DOI] [PubMed]
  2. Bruker (2007). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Grosshenny, V., Harriman, A., Gisselbrecht, J.-P. & Ziessel, R. (1996). J. Am. Chem. Soc. 118, 10315–10316.
  4. Grosshenny, V., Romero, F. M. & Ziessel, R. (1997). J. Org. Chem. 62, 1491–1500.
  5. Hammarström, L. & Johansson, O. (2010). Coord. Chem. Rev. 254, 2546–2559.
  6. Lashgari, K., Kritikos, M., Norrestam, R. & Norrby, T. (1999). Acta Cryst. C55, 64–67.
  7. Ruben, M., Landa, A., Lörtscher, E., Riel, H., Mayor, M., Görls, H., Weber, H. B., Arnold, A. & Evers, F. (2008). Small, 4, 2229–2235. [DOI] [PubMed]
  8. Ruther, R. E., Rigsby, M. L., Gerken, J. B., Hogendoorn, S. R., Landis, E. C., Stahl, S. S. & Hamers, R. J. (2011). J. Am. Chem. Soc. 133, 5692–5694. [DOI] [PubMed]
  9. Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). CrystEngComm, 7, 642–649.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sullivan, B. P., Calvert, J. M. & Meyer, T. J. (1980). Inorg. Chem. 19, 1404–1407.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  13. Ziessel, R., Grosshenny, V., Hissler, M. & Stroh, C. (2004). Inorg. Chem. 43, 4262–4271. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051227/sj5287sup1.cif

e-69-00m79-sup1.cif (38.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051227/sj5287Isup2.hkl

e-69-00m79-Isup2.hkl (366.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES