Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 9;69(Pt 2):m83–m84. doi: 10.1107/S1600536812051562

Di-μ-thio­semicarbazide-κ4 S:S-bis­[chlori­dobis(triphenyl­phosphane-κP)silver(I)]

Yupa Wattanakanjana a,*, Chaveng Pakawatchai b, Ruthairat Nimthong b
PMCID: PMC3569183  PMID: 23424427

Abstract

The dinuclear title complex, [Ag2Cl2(CH5N3S)2(C18H15P)2], lies across an inversion center. The AgI ion exhibits a slightly distorted tetra­hedral coordination geometry formed by a P atom from a triphenyl­phosphane ligand, two metal-bridging S atoms from thio­semicabazide ligands and one chloride ion. The S atoms bridge two symmetry-related AgI ions, forming a strictly planar Ag2S2 core with an Ag⋯Ag separation of 2.7802 (7) Å. There is an intra­molecular N—H⋯Cl hydrogen bond. In the crystal, N—H⋯Cl and N—H⋯S hydrogen bonds link complex mol­ecules, forming layers parallel to (001). These layers are connected through π–π stacking inter­actions [centroid–centroid distance = 3.665 (2) Å], leading to the formation of a three-dimensional network.

Related literature  

For metal(I) complexes of phosphine ligands as precursors for the preparation of mixed-ligand complexes, see: Ferrari et al. (2007); Pakawatchai et al. (2012). For potential applications of thio­semicarbazide derivatives and their metal complexes, see: Pandeya et al. (1999); Wujec et al. (2009); Mohareb & Mohamed (2012); He et al. (2012). For examples of related discrete complexes, see: Wattanakanjana et al. (2012); Lobana et al. (2008).graphic file with name e-69-00m83-scheme1.jpg

Experimental  

Crystal data  

  • [Ag2Cl2(CH5N3S)2(C18H15P)2]

  • M r = 993.46

  • Triclinic, Inline graphic

  • a = 8.7845 (4) Å

  • b = 9.4656 (4) Å

  • c = 13.7529 (6) Å

  • α = 109.276 (1)°

  • β = 98.306 (1)°

  • γ = 99.739 (1)°

  • V = 1038.94 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 293 K

  • 0.38 × 0.30 × 0.10 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.638, T max = 0.880

  • 14302 measured reflections

  • 5026 independent reflections

  • 4627 reflections with I > 2σ(I)

  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.069

  • S = 1.06

  • 5026 reflections

  • 251 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051562/lh5573sup1.cif

e-69-00m83-sup1.cif (28KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051562/lh5573Isup2.hkl

e-69-00m83-Isup2.hkl (246.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯Cl1i 0.87 (2) 2.67 (2) 3.535 (2) 171 (2)
N2—H2⋯S1ii 0.83 (2) 2.66 (2) 3.4320 (15) 155 (2)
N1—H1B⋯Cl1iii 0.85 (2) 2.63 (2) 3.4088 (16) 154 (2)
N1—H1A⋯Cl1 0.89 (2) 2.45 (2) 3.3239 (16) 170 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We gratefully acknowledge financial support from the Center for Innovation in Chemistry (PERCH–CIC), the Commission on Higher Education, Ministry of Education, the Department of Chemistry and the Graduate School, Prince of Songkla University.

supplementary crystallographic information

Comment

Metal(I) complexes of phosphine ligands have been extensively studied as precursors for preparing mixed-ligand complexes (Ferrari et al., 2007; Pakawatchai et al., 2012) having different geometries such as mononuclear and dinuclear. Thiosemicabazide and thiosemicarbazide derivatives, as well as their metal complexes, have recently attracted considerable attention because of their relevance in biological systems such as antitumor, antimicrobial, antibacterial and antifungal activities (Pandeya et al., 1999; Wujec et al., 2009; Mohareb et al., 2012; He et al., 2012). Herein, the crystal structure of a dinuclear silver(I) chloride complex containing triphenylphosphane and thiosemicarbazide is described.

The molecular structure of the title dinuclear compound is shown in Fig. 1. The molecule lies acroos a crystallographic inversion center which is at the center of the Ag2S2 core with a Ag···Ag separation of 2.7802 (7) Å. The bond angles around AgI ion are approximately in the range of 111.851 (15)–123.445 (15)°. Geometrical distortion from ideal angles (109.47°) can be explained by the need to accommodate the bulky triphenylphosphane groups. The P1—Ag1 bond length of 2.4225 (4) Å is slightly longer than that found in for example [Ag2(C6H7N2S)2(C18H15P)2], which is 2.4088 (6) Å (Wattanakanjana et al., 2012). The bridging Ag—S bond length (Ag1—S1 = 2.5202 (4) Å) is shorter than those observed in related silver(I) complexes containing S-bridged donor ligand, due to 2.5832 (8)–2.7208 (11) Å for [Ag2Cl2(l-S-pySH)2(PPh3)2] and 2.6306 (4)–2.6950 (7) Å for [Ag2Br2(l-S-pySH)2(PPh3)2] (Lobana et al., 2008). There is intramolecular N—H···Cl hydrogen bond with the geometry N1···Cl1 = 3.3239 (16) Å. In the crystal, an N1—H1B···Cl1 hydrogen bond connects molecules forming one dimensional chain alongs [010]. Each chain is linked through N2—H2···S1 and N3—H3B···Cl1 hydrogen bonds forming a layer parallel to (001) (Fig. 2). In addition, the layers are stacked via π···π stacking interactions [centroid–centroid distance = 3.665 (2) Å, centroid = C31—C36 ring] froming the three dimensional network (Fig. 3).

Experimental

Triphenylphosphane (0.37 g, 1.41 mmol) was dissolved in 30 cm3 of acetonitrile at 335 K. AgCl (0.10 g, 0.70 mmol) was added and the mixture was stirred for 2.5 h. Thiosemicabazide (0.06 g, 0.66 mmol) was added and the new reaction mixture was heated under reflux for 5 h. The resulting clear solution was filtered off and left to evaporate at room temperature. The crystalline solid, which was deposited upon standing for few days, was filtered off and dried under reduced pressure.

Refinement

All H atoms bonded to C atoms were constrained with a riding model of 0.93 Å, and Uiso(H) = 1.2Ueq(C). H atoms bonded to the N atoms were located in a difference Fourier map and refined isotropically, with restrained N—H distances 0.834 (16)–0.888 (16) Å with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure with displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity.

Fig. 2.

Fig. 2.

Part of the crystal structure with N—H···S and N—H···Cl hydrogen bonds shown as dashed lines.

Fig. 3.

Fig. 3.

Part of the crystal structure with π–π stacking interactions shown as dashed lines.

Crystal data

[Ag2Cl2(CH5N3S)2(C18H15P)2] Z = 1
Mr = 993.46 F(000) = 500
Triclinic, P1 Dx = 1.588 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.7845 (4) Å Cell parameters from 9010 reflections
b = 9.4656 (4) Å θ = 2.3–28.0°
c = 13.7529 (6) Å µ = 1.28 mm1
α = 109.276 (1)° T = 293 K
β = 98.306 (1)° Block, colorless
γ = 99.739 (1)° 0.38 × 0.30 × 0.10 mm
V = 1038.94 (8) Å3

Data collection

Bruker SMART CCD diffractometer 5026 independent reflections
Radiation source: fine-focus sealed tube 4627 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
Full–matrix least–squares on F2 scans θmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −11→11
Tmin = 0.638, Tmax = 0.880 k = −12→12
14302 measured reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0293P)2 + 0.2733P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.003
5026 reflections Δρmax = 0.38 e Å3
251 parameters Δρmin = −0.55 e Å3
5 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0693 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.71808 (17) 1.20926 (18) 0.50782 (12) 0.0350 (3)
C11 1.16762 (18) 0.7721 (2) 0.21780 (12) 0.0418 (3)
C12 1.2004 (2) 0.6279 (3) 0.18680 (16) 0.0564 (5)
H12 1.1194 0.5403 0.1675 0.068*
C13 1.3557 (3) 0.6145 (3) 0.18463 (19) 0.0701 (6)
H13 1.3781 0.5177 0.1635 0.084*
C14 1.4747 (3) 0.7429 (4) 0.21342 (19) 0.0712 (7)
H14 1.5778 0.7330 0.2111 0.085*
C15 1.4436 (2) 0.8871 (3) 0.24596 (17) 0.0628 (6)
H15 1.5255 0.9741 0.2657 0.075*
C16 1.2904 (2) 0.9025 (2) 0.24935 (14) 0.0481 (4)
H16 1.2695 0.9999 0.2727 0.058*
C21 0.84762 (18) 0.61752 (19) 0.20371 (13) 0.0404 (3)
C22 0.7696 (2) 0.5083 (2) 0.10569 (15) 0.0546 (4)
H22 0.7794 0.5284 0.0448 0.065*
C23 0.6776 (3) 0.3701 (3) 0.09818 (19) 0.0678 (6)
H23 0.6257 0.2977 0.0322 0.081*
C24 0.6619 (3) 0.3386 (3) 0.1867 (2) 0.0732 (6)
H24 0.6023 0.2439 0.1809 0.088*
C25 0.7351 (3) 0.4481 (3) 0.2851 (2) 0.0789 (7)
H25 0.7228 0.4276 0.3456 0.095*
C26 0.8265 (3) 0.5878 (3) 0.29402 (17) 0.0619 (5)
H26 0.8737 0.6618 0.3603 0.074*
C31 0.90601 (19) 0.8272 (2) 0.09696 (15) 0.0447 (4)
C32 0.9697 (3) 0.7705 (2) 0.00965 (15) 0.0562 (4)
H32 1.0525 0.7220 0.0147 0.067*
C33 0.9124 (3) 0.7846 (3) −0.08519 (19) 0.0758 (7)
H33 0.9564 0.7463 −0.1433 0.091*
C34 0.7892 (4) 0.8561 (4) −0.0922 (3) 0.0916 (10)
H34 0.7483 0.8642 −0.1559 0.110*
C35 0.7272 (3) 0.9150 (4) −0.0065 (3) 0.0931 (10)
H35 0.6449 0.9639 −0.0121 0.112*
C36 0.7850 (2) 0.9031 (3) 0.0888 (2) 0.0666 (6)
H36 0.7432 0.9457 0.1472 0.080*
N1 0.82011 (18) 1.32995 (18) 0.51108 (14) 0.0474 (3)
N2 0.57728 (17) 1.22460 (17) 0.52697 (14) 0.0478 (3)
N3 0.5365 (2) 1.3672 (2) 0.54628 (19) 0.0609 (5)
P1 0.96967 (5) 0.80383 (5) 0.22142 (3) 0.03895 (10)
S1 0.75685 (4) 1.02919 (4) 0.47995 (3) 0.03889 (10)
Cl1 1.13857 (6) 1.28186 (5) 0.41121 (4) 0.05418 (12)
Ag1 0.977789 (17) 1.016088 (15) 0.381354 (12) 0.05737 (8)
H1A 0.912 (2) 1.320 (3) 0.4929 (19) 0.069*
H1B 0.797 (3) 1.417 (2) 0.530 (2) 0.069*
H2 0.518 (3) 1.146 (2) 0.526 (2) 0.069*
H3A 0.528 (3) 1.404 (3) 0.6102 (14) 0.069*
H3B 0.443 (2) 1.349 (3) 0.5070 (18) 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0332 (7) 0.0382 (7) 0.0346 (7) 0.0098 (6) 0.0061 (5) 0.0142 (6)
C11 0.0328 (7) 0.0549 (10) 0.0334 (7) 0.0156 (7) 0.0070 (6) 0.0082 (7)
C12 0.0476 (10) 0.0577 (11) 0.0546 (10) 0.0222 (9) 0.0088 (8) 0.0047 (9)
C13 0.0606 (13) 0.0856 (17) 0.0659 (13) 0.0444 (13) 0.0159 (10) 0.0154 (12)
C14 0.0395 (10) 0.116 (2) 0.0689 (13) 0.0367 (12) 0.0176 (9) 0.0363 (14)
C15 0.0352 (9) 0.0982 (17) 0.0597 (12) 0.0118 (10) 0.0102 (8) 0.0366 (12)
C16 0.0377 (8) 0.0630 (11) 0.0454 (9) 0.0119 (8) 0.0088 (7) 0.0218 (8)
C21 0.0336 (7) 0.0431 (8) 0.0419 (8) 0.0124 (6) 0.0080 (6) 0.0107 (7)
C22 0.0610 (11) 0.0483 (10) 0.0432 (9) 0.0011 (8) 0.0152 (8) 0.0063 (8)
C23 0.0743 (14) 0.0492 (11) 0.0610 (12) −0.0057 (10) 0.0126 (11) 0.0063 (9)
C24 0.0709 (14) 0.0592 (13) 0.0896 (17) 0.0004 (11) 0.0118 (12) 0.0368 (13)
C25 0.0872 (17) 0.0848 (17) 0.0714 (15) 0.0060 (14) 0.0063 (13) 0.0483 (14)
C26 0.0638 (12) 0.0692 (13) 0.0483 (10) 0.0083 (10) −0.0014 (9) 0.0249 (10)
C31 0.0343 (7) 0.0401 (8) 0.0552 (10) 0.0030 (6) 0.0044 (7) 0.0166 (7)
C32 0.0637 (12) 0.0529 (11) 0.0468 (10) 0.0099 (9) 0.0097 (8) 0.0141 (8)
C33 0.0969 (19) 0.0617 (13) 0.0547 (12) −0.0107 (13) 0.0015 (12) 0.0234 (11)
C34 0.0875 (19) 0.0859 (19) 0.097 (2) −0.0152 (15) −0.0220 (16) 0.0621 (18)
C35 0.0588 (14) 0.100 (2) 0.138 (3) 0.0163 (14) −0.0038 (16) 0.078 (2)
C36 0.0438 (10) 0.0688 (13) 0.1000 (17) 0.0183 (9) 0.0158 (11) 0.0442 (13)
N1 0.0388 (7) 0.0386 (7) 0.0699 (10) 0.0106 (6) 0.0169 (7) 0.0230 (7)
N2 0.0372 (7) 0.0396 (7) 0.0729 (10) 0.0145 (6) 0.0200 (7) 0.0226 (7)
N3 0.0468 (9) 0.0477 (9) 0.0920 (14) 0.0236 (7) 0.0164 (9) 0.0234 (9)
P1 0.03125 (19) 0.0388 (2) 0.0393 (2) 0.00988 (15) 0.00878 (15) 0.00323 (16)
S1 0.03454 (18) 0.03454 (19) 0.0490 (2) 0.01021 (14) 0.01279 (15) 0.01437 (16)
Cl1 0.0497 (2) 0.0406 (2) 0.0713 (3) 0.00658 (17) 0.0195 (2) 0.0183 (2)
Ag1 0.05604 (11) 0.04168 (10) 0.06025 (12) 0.00514 (6) 0.02583 (7) −0.00213 (7)

Geometric parameters (Å, º)

C1—N1 1.311 (2) C25—H25 0.9300
C1—N2 1.323 (2) C26—H26 0.9300
C1—S1 1.7236 (16) C31—C32 1.383 (3)
C11—C12 1.383 (3) C31—C36 1.391 (3)
C11—C16 1.391 (3) C31—P1 1.8184 (18)
C11—P1 1.8189 (16) C32—C33 1.386 (3)
C12—C13 1.394 (3) C32—H32 0.9300
C12—H12 0.9300 C33—C34 1.377 (4)
C13—C14 1.364 (4) C33—H33 0.9300
C13—H13 0.9300 C34—C35 1.360 (5)
C14—C15 1.377 (4) C34—H34 0.9300
C14—H14 0.9300 C35—C36 1.383 (4)
C15—C16 1.384 (3) C35—H35 0.9300
C15—H15 0.9300 C36—H36 0.9300
C16—H16 0.9300 N1—H1A 0.888 (16)
C21—C22 1.389 (2) N1—H1B 0.851 (17)
C21—C26 1.391 (3) N2—N3 1.406 (2)
C21—P1 1.8221 (18) N2—H2 0.834 (16)
C22—C23 1.381 (3) N3—H3A 0.851 (16)
C22—H22 0.9300 N3—H3B 0.870 (16)
C23—C24 1.366 (4) P1—Ag1 2.4225 (4)
C23—H23 0.9300 S1—Ag1 2.5202 (4)
C24—C25 1.384 (4) Cl1—Ag1 2.5378 (5)
C24—H24 0.9300 Ag1—Ag1i 3.3502 (4)
C25—C26 1.383 (3)
N1—C1—N2 119.02 (15) C32—C31—P1 123.22 (14)
N1—C1—S1 123.57 (12) C36—C31—P1 118.21 (17)
N2—C1—S1 117.41 (12) C31—C32—C33 121.2 (2)
C12—C11—C16 119.68 (16) C31—C32—H32 119.4
C12—C11—P1 123.64 (15) C33—C32—H32 119.4
C16—C11—P1 116.68 (13) C34—C33—C32 119.1 (3)
C11—C12—C13 119.7 (2) C34—C33—H33 120.5
C11—C12—H12 120.2 C32—C33—H33 120.5
C13—C12—H12 120.2 C35—C34—C33 120.4 (2)
C14—C13—C12 120.2 (2) C35—C34—H34 119.8
C14—C13—H13 119.9 C33—C34—H34 119.8
C12—C13—H13 119.9 C34—C35—C36 120.9 (3)
C13—C14—C15 120.57 (19) C34—C35—H35 119.6
C13—C14—H14 119.7 C36—C35—H35 119.6
C15—C14—H14 119.7 C35—C36—C31 119.8 (3)
C14—C15—C16 120.0 (2) C35—C36—H36 120.1
C14—C15—H15 120.0 C31—C36—H36 120.1
C16—C15—H15 120.0 C1—N1—H1A 120.0 (17)
C15—C16—C11 119.9 (2) C1—N1—H1B 119.0 (18)
C15—C16—H16 120.1 H1A—N1—H1B 121 (2)
C11—C16—H16 120.1 C1—N2—N3 120.06 (15)
C22—C21—C26 118.97 (18) C1—N2—H2 115.7 (18)
C22—C21—P1 123.40 (14) N3—N2—H2 124.3 (19)
C26—C21—P1 117.55 (14) N2—N3—H3A 109.2 (19)
C23—C22—C21 120.31 (19) N2—N3—H3B 106.8 (18)
C23—C22—H22 119.8 H3A—N3—H3B 107 (2)
C21—C22—H22 119.8 C31—P1—C11 103.77 (8)
C24—C23—C22 120.6 (2) C31—P1—C21 103.33 (8)
C24—C23—H23 119.7 C11—P1—C21 105.00 (8)
C22—C23—H23 119.7 C31—P1—Ag1 117.05 (6)
C23—C24—C25 119.7 (2) C11—P1—Ag1 109.59 (5)
C23—C24—H24 120.1 C21—P1—Ag1 116.71 (6)
C25—C24—H24 120.1 C1—S1—Ag1 108.17 (5)
C26—C25—C24 120.3 (2) P1—Ag1—S1 123.445 (15)
C26—C25—H25 119.8 P1—Ag1—Cl1 119.164 (17)
C24—C25—H25 119.8 S1—Ag1—Cl1 111.851 (15)
C25—C26—C21 120.0 (2) P1—Ag1—Ag1i 122.531 (13)
C25—C26—H26 120.0 S1—Ag1—Ag1i 58.885 (10)
C21—C26—H26 120.0 Cl1—Ag1—Ag1i 105.880 (14)
C32—C31—C36 118.6 (2)
C16—C11—C12—C13 −1.8 (3) C36—C31—P1—C21 91.93 (16)
P1—C11—C12—C13 178.80 (17) C32—C31—P1—Ag1 143.54 (15)
C11—C12—C13—C14 0.3 (4) C36—C31—P1—Ag1 −37.84 (17)
C12—C13—C14—C15 0.7 (4) C12—C11—P1—C31 −96.91 (17)
C13—C14—C15—C16 −0.2 (3) C16—C11—P1—C31 83.68 (14)
C14—C15—C16—C11 −1.3 (3) C12—C11—P1—C21 11.23 (18)
C12—C11—C16—C15 2.3 (3) C16—C11—P1—C21 −168.18 (13)
P1—C11—C16—C15 −178.27 (14) C12—C11—P1—Ag1 137.34 (15)
C26—C21—C22—C23 −2.5 (3) C16—C11—P1—Ag1 −42.07 (14)
P1—C21—C22—C23 −179.27 (18) C22—C21—P1—C31 18.41 (17)
C21—C22—C23—C24 0.0 (4) C26—C21—P1—C31 −158.39 (15)
C22—C23—C24—C25 2.0 (4) C22—C21—P1—C11 −90.05 (16)
C23—C24—C25—C26 −1.3 (5) C26—C21—P1—C11 93.14 (16)
C24—C25—C26—C21 −1.3 (4) C22—C21—P1—Ag1 148.38 (14)
C22—C21—C26—C25 3.1 (3) C26—C21—P1—Ag1 −28.42 (16)
P1—C21—C26—C25 −179.9 (2) N1—C1—S1—Ag1 −21.93 (16)
C36—C31—C32—C33 −1.7 (3) N2—C1—S1—Ag1 158.21 (12)
P1—C31—C32—C33 176.89 (16) C31—P1—Ag1—S1 96.31 (6)
C31—C32—C33—C34 −0.2 (3) C11—P1—Ag1—S1 −145.95 (6)
C32—C33—C34—C35 1.4 (4) C21—P1—Ag1—S1 −26.83 (6)
C33—C34—C35—C36 −0.7 (4) C31—P1—Ag1—Cl1 −55.26 (7)
C34—C35—C36—C31 −1.3 (4) C11—P1—Ag1—Cl1 62.48 (7)
C32—C31—C36—C35 2.5 (3) C21—P1—Ag1—Cl1 −178.40 (6)
P1—C31—C36—C35 −176.20 (19) C31—P1—Ag1—Ag1i 168.06 (6)
N1—C1—N2—N3 2.5 (3) C11—P1—Ag1—Ag1i −74.21 (7)
S1—C1—N2—N3 −177.61 (15) C21—P1—Ag1—Ag1i 44.92 (6)
C32—C31—P1—C11 22.69 (18) C1—S1—Ag1—P1 −132.43 (5)
C36—C31—P1—C11 −158.69 (16) C1—S1—Ag1—Cl1 20.96 (6)
C32—C31—P1—C21 −86.69 (17) C1—S1—Ag1—Ag1i 116.84 (5)

Symmetry code: (i) −x+2, −y+2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3B···Cl1ii 0.87 (2) 2.67 (2) 3.535 (2) 171 (2)
N2—H2···S1iii 0.83 (2) 2.66 (2) 3.4320 (15) 155 (2)
N1—H1B···Cl1iv 0.85 (2) 2.63 (2) 3.4088 (16) 154 (2)
N1—H1A···Cl1 0.89 (2) 2.45 (2) 3.3239 (16) 170 (2)

Symmetry codes: (ii) x−1, y, z; (iii) −x+1, −y+2, −z+1; (iv) −x+2, −y+3, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5573).

References

  1. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2003). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Ferrari, M. B., Bisceglie, F., Cavalli, E., Pelosi, G., Tarasconi, P. & Verdolino, V. (2007). Inorg. Chim. Acta, 360, 3233–3240.
  4. He, J., Wang, X., Zhao, X., Liang, Y., He, H. & Fu, L. (2012). Eur. J. Med. Chem. 54, 925–930. [DOI] [PubMed]
  5. Lobana, T. S., Sharma, R. S. & Butcher, R. J. (2008). Polyhedron, 27, 1375–1380.
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Mohareb, R. M. & Mohamed, A. A. (2012). Int. J. Pure. Appl. Chem. 2, 144–155.
  8. Pakawatchai, C., Jantaramas, P., Mokhagul, J. & Nimthong, R. (2012). Acta Cryst. E68, m1506–m1507. [DOI] [PMC free article] [PubMed]
  9. Pandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999). Eur. J. Pharm. Sci. 9, 25–31. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Wattanakanjana, Y., Pakawatchai, C., Kowittheeraphong, S. & Nimthong, R. (2012). Acta Cryst. E68, m1572–m1573. [DOI] [PMC free article] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  13. Wujec, M., Stefańska, J., Siwek, A. & Tatarczak, M. (2009). Acta Polon. Pharm. Drug Res. 66, 73–82. [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051562/lh5573sup1.cif

e-69-00m83-sup1.cif (28KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051562/lh5573Isup2.hkl

e-69-00m83-Isup2.hkl (246.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES