Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 9;69(Pt 2):m85. doi: 10.1107/S1600536812050672

Poly[bis­(μ2-5-{4-[(1H-imidazol-1-yl)meth­yl]phen­yl}tetra­zolato)zinc]

Zhe Song a,*
PMCID: PMC3569184  PMID: 23424428

Abstract

In the title compound, [Zn(C11H9N6)2]n, the ZnII atom lies on an inversion center and is coordinated by four N atoms from four 5-[4-(1H-imidazol-1-ylmeth­yl)phen­yl]tetra­zolate ligands in a distorted tetra­hedral geometry. The ligands bridge the ZnII atoms, leading to the formation of a two-dimensional network parallel to (010). The structure is further stabilized by C—H⋯N, C—H⋯π and π–π [centroid–centroid distance = 3.7523 (11) Å] inter­actions within the network.

Related literature  

For background to metal-organic architectures, see: Awaleh et al. (2005); Mooibroek & Gamez (2007); Su et al. (2009). For background to metal–azolate frameworks, see: Darling et al. (2012). For related structures, see: Huang et al. (2009); Su et al. (2009).graphic file with name e-69-00m85-scheme1.jpg

Experimental  

Crystal data  

  • [Zn(C11H9N6)2]

  • M r = 515.85

  • Orthorhombic, Inline graphic

  • a = 16.1206 (12) Å

  • b = 9.3720 (7) Å

  • c = 14.6367 (11) Å

  • V = 2211.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 273 K

  • 0.28 × 0.26 × 0.24 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.736, T max = 0.752

  • 11210 measured reflections

  • 2105 independent reflections

  • 1874 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.081

  • S = 1.07

  • 2105 reflections

  • 159 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812050672/zq2192sup1.cif

e-69-00m85-sup1.cif (15.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050672/zq2192Isup2.hkl

e-69-00m85-Isup2.hkl (103.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812050672/zq2192Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯N4i 0.93 2.45 3.344 (2) 163
C8—H8ACg2ii 0.97 2.88 3.692 (2) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Foundation of Changchun Normal University.

supplementary crystallographic information

Comment

Metal–Organic Frameworks (MOFs) continue to receive significant contemporary attention, reflecting their applications to fields as diverse as gas storage, separation, and catalysis (Mooibroek et al., 2007; Awaleh et al., 2005). Transition metal complexes using tetrazole derivatives as ligands are of great interest as many compounds based on these ligands have shown intriguing structures with interesting properties (Su et al., 2009; Darling et al., 2012). Recently, we obtained the title complex by the reaction of zincacetate with 5-(4-imidazol-1-yl-benzyl)-2H-tetrazole using hydrothermal method and its crystal structure is reported here.

In the title compound, the ZnII atom lies on an inversion center and adopts a distorted tetrahedral coordination geometry, being coordinated by four N atoms from four azolate ligands (Fig. 1). The bridging azolate ligands allow the formation of a two-dimensional network parallel to (010) (Fig. 2), while in a related structure the azolate C11H9N6 ligands form one-dimensional chains with the ZnII atoms (Huang et al., 2009). The crystal structure is further stabilized by C–H···N, C–H···π and and π-π interactions within the network (see Geometric parameters and Table 1: Cg1 and Cg2 corresponding to the centroids of the N1-N2-N3-N4-C7 and C1–C6 rings, respectively).

Experimental

A mixture of Zn(OAc)2.2H2O (0.2 mmol, 0.043 g), 5-(4-imidazol-1-yl-benzyl)-2H-tetrazole (0.2 mmol, 0.045 g), NH3.H2O (2 mL), EtOH (5 ml) and water (5 ml) was sealed in a 15 ml Teflon-lined reactor, which was heated at 100°C for 72 h and then gradually cooled to room temperature. Colourless crystals were obtained.

Refinement

The H atoms were generated geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) or 0.97 (CH2) Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Symmetry codes: (i) -x+1, y, -z+3/2; (ii) -x+3/2, -y-1/2, z+1/2; (iii) x-1/2, -y-1/2, -z+1.

Fig. 2.

Fig. 2.

View of the two-dimensional network of the title compound.

Crystal data

[Zn(C11H9N6)2] F(000) = 1056
Mr = 515.85 Dx = 1.549 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 2105 reflections
a = 16.1206 (12) Å θ = 2.5–25.7°
b = 9.3720 (7) Å µ = 1.15 mm1
c = 14.6367 (11) Å T = 273 K
V = 2211.3 (3) Å3 Block, colourless
Z = 4 0.28 × 0.26 × 0.24 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 2105 independent reflections
Radiation source: fine-focus sealed tube 1874 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
phi and ω scans θmax = 25.7°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −13→19
Tmin = 0.736, Tmax = 0.752 k = −11→11
11210 measured reflections l = −17→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.045P)2 + 1.2542P] where P = (Fo2 + 2Fc2)/3
2105 reflections (Δ/σ)max < 0.001
159 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.5000 −0.00874 (3) 0.7500 0.02093 (12)
N1 0.56706 (10) −0.22486 (17) 0.62224 (10) 0.0287 (4)
N2 0.50779 (9) −0.12643 (17) 0.63732 (11) 0.0250 (3)
N3 0.45760 (9) −0.11431 (16) 0.56620 (10) 0.0258 (3)
N4 0.48338 (10) −0.20502 (19) 0.50222 (9) 0.0251 (4)
N5 0.78108 (9) −0.70455 (15) 0.30116 (10) 0.0227 (3)
N6 0.89739 (10) −0.60890 (17) 0.25437 (9) 0.0236 (3)
C1 0.59424 (12) −0.3877 (2) 0.49151 (11) 0.0243 (4)
C2 0.65678 (12) −0.4625 (2) 0.53566 (13) 0.0294 (4)
H2 0.6729 −0.4359 0.5942 0.080*
C3 0.69536 (13) −0.5767 (2) 0.49300 (12) 0.0300 (4)
H3 0.7372 −0.6260 0.5232 0.080*
C4 0.67212 (11) −0.61812 (19) 0.40553 (12) 0.0258 (4)
C5 0.61043 (12) −0.5417 (2) 0.36076 (13) 0.0277 (4)
H5 0.5949 −0.5677 0.3019 0.080*
C6 0.57190 (11) −0.4272 (2) 0.40282 (12) 0.0271 (4)
H6 0.5310 −0.3764 0.3719 0.080*
C7 0.54942 (11) −0.27135 (19) 0.53796 (12) 0.0234 (4)
C8 0.71159 (12) −0.74616 (19) 0.36103 (13) 0.0299 (4)
H8A 0.7317 −0.8105 0.4079 0.080*
H8B 0.6702 −0.7966 0.3253 0.080*
C9 0.84655 (11) −0.62443 (18) 0.32411 (12) 0.0233 (4)
H9 0.8550 −0.5850 0.3817 0.080*
C10 0.86280 (13) −0.6845 (2) 0.18321 (13) 0.0370 (5)
H10 0.8853 −0.6934 0.1250 0.080*
C11 0.79073 (13) −0.7436 (2) 0.21178 (14) 0.0360 (5)
H11 0.7548 −0.7997 0.1774 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.01744 (19) 0.02404 (18) 0.02131 (19) 0.000 −0.00210 (10) 0.000
N1 0.0271 (8) 0.0325 (8) 0.0265 (8) 0.0039 (7) −0.0012 (6) −0.0046 (7)
N2 0.0234 (8) 0.0271 (8) 0.0245 (8) 0.0004 (6) −0.0012 (6) −0.0019 (7)
N3 0.0253 (8) 0.0272 (8) 0.0249 (8) −0.0019 (6) 0.0007 (6) −0.0013 (6)
N4 0.0259 (8) 0.0277 (9) 0.0218 (8) −0.0003 (7) 0.0010 (6) −0.0013 (6)
N5 0.0204 (7) 0.0243 (7) 0.0234 (8) −0.0017 (6) 0.0044 (6) −0.0008 (6)
N6 0.0203 (8) 0.0265 (8) 0.0239 (8) −0.0002 (6) 0.0025 (6) −0.0012 (6)
C1 0.0226 (9) 0.0261 (9) 0.0241 (9) −0.0036 (7) 0.0054 (7) 0.0004 (7)
C2 0.0286 (10) 0.0357 (10) 0.0241 (10) 0.0017 (8) 0.0021 (8) −0.0008 (8)
C3 0.0280 (10) 0.0334 (11) 0.0286 (10) 0.0037 (8) 0.0039 (8) 0.0040 (8)
C4 0.0237 (9) 0.0246 (9) 0.0290 (9) −0.0034 (7) 0.0096 (7) 0.0022 (7)
C5 0.0269 (10) 0.0309 (9) 0.0254 (9) −0.0039 (8) 0.0037 (8) −0.0030 (8)
C6 0.0250 (9) 0.0299 (10) 0.0264 (9) −0.0009 (8) 0.0013 (8) 0.0006 (8)
C7 0.0220 (9) 0.0250 (9) 0.0231 (9) −0.0031 (7) 0.0026 (7) 0.0008 (7)
C8 0.0276 (10) 0.0259 (9) 0.0361 (10) −0.0030 (7) 0.0135 (8) 0.0007 (8)
C9 0.0236 (9) 0.0237 (9) 0.0228 (9) −0.0015 (7) 0.0025 (7) −0.0009 (7)
C10 0.0322 (11) 0.0568 (13) 0.0221 (9) −0.0122 (10) 0.0048 (8) −0.0085 (9)
C11 0.0318 (11) 0.0515 (13) 0.0246 (10) −0.0116 (9) 0.0022 (8) −0.0101 (9)

Geometric parameters (Å, º)

Zn1—N2 1.9880 (16) C1—C7 1.474 (3)
Zn1—N2i 1.9880 (16) C2—C3 1.386 (3)
Zn1—N6ii 1.9889 (16) C2—H2 0.9300
Zn1—N6iii 1.9889 (16) C3—C4 1.390 (3)
N1—C7 1.339 (2) C3—H3 0.9300
N1—N2 1.346 (2) C4—C5 1.390 (3)
N2—N3 1.323 (2) C4—C8 1.506 (2)
N3—N4 1.331 (2) C5—C6 1.384 (3)
N4—C7 1.339 (2) C5—H5 0.9300
N5—C9 1.338 (2) C6—H6 0.9300
N5—C11 1.367 (2) C8—H8A 0.9700
N5—C8 1.475 (2) C8—H8B 0.9700
N6—C9 1.317 (2) C9—H9 0.9300
N6—C10 1.377 (2) C10—C11 1.353 (3)
N6—Zn1iv 1.9889 (16) C10—H10 0.9300
C1—C2 1.388 (3) C11—H11 0.9300
C1—C6 1.397 (2) Cg1—Cg2v 3.7523 (11)
N2—Zn1—N2i 112.61 (9) C3—C4—C5 118.89 (17)
N2—Zn1—N6ii 106.36 (6) C3—C4—C8 120.48 (17)
N2i—Zn1—N6ii 109.48 (6) C5—C4—C8 120.61 (17)
N2—Zn1—N6iii 109.48 (6) C6—C5—C4 120.74 (17)
N2i—Zn1—N6iii 106.36 (6) C6—C5—H5 119.6
N6ii—Zn1—N6iii 112.67 (9) C4—C5—H5 119.6
C7—N1—N2 102.90 (15) C5—C6—C1 120.20 (18)
N3—N2—N1 111.33 (14) C5—C6—H6 119.9
N3—N2—Zn1 124.49 (12) C1—C6—H6 119.9
N1—N2—Zn1 124.13 (12) N1—C7—N4 112.20 (16)
N2—N3—N4 107.92 (14) N1—C7—C1 124.16 (17)
N3—N4—C7 105.65 (14) N4—C7—C1 123.56 (16)
C9—N5—C11 107.49 (14) N5—C8—C4 111.54 (14)
C9—N5—C8 126.75 (15) N5—C8—H8A 109.3
C11—N5—C8 125.75 (15) C4—C8—H8A 109.3
C9—N6—C10 106.10 (15) N5—C8—H8B 109.3
C9—N6—Zn1iv 127.13 (12) C4—C8—H8B 109.3
C10—N6—Zn1iv 126.68 (12) H8A—C8—H8B 108.0
C2—C1—C6 119.07 (17) N6—C9—N5 110.99 (15)
C2—C1—C7 121.01 (16) N6—C9—H9 124.5
C6—C1—C7 119.88 (17) N5—C9—H9 124.5
C3—C2—C1 120.42 (18) C11—C10—N6 108.92 (16)
C3—C2—H2 119.8 C11—C10—H10 125.5
C1—C2—H2 119.8 N6—C10—H10 125.5
C2—C3—C4 120.66 (18) C10—C11—N5 106.49 (16)
C2—C3—H3 119.7 C10—C11—H11 126.8
C4—C3—H3 119.7 N5—C11—H11 126.8

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+3/2, −y−1/2, z+1/2; (iii) x−1/2, −y−1/2, −z+1; (iv) −x+3/2, −y−1/2, z−1/2; (v) −x+1, −y−1, −z+1.

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C10—H10···N4vi 0.93 2.45 3.344 (2) 163
C8—H8A···Cg2vii 0.97 2.88 3.692 (2) 142

Symmetry codes: (vi) x+1/2, y−1/2, −z+1/2; (vii) x+1, −y−1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2192).

References

  1. Awaleh, M. O., Badia, A. & Brisse, F. (2005). Cryst. Growth Des. 5, 1897–1906.
  2. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Darling, K., Ouellette, W., Pellizzeri, S., Smith, T., Vargas, J., Tomaszfski, S., O’Connor, C. J. & Zubieta, J. (2012). Inorg. Chim. Acta, 392, 417–427.
  6. Huang, R.-Y., Zhu, K., Chen, H., Liu, G.-X. & Ren, X.-M. (2009). Wuji Huaxue Xuebao, 25, 162–165.
  7. Mooibroek, T. J. & Gamez, P. (2007). Inorg. Chim. Acta, 360, 381–404.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Su, Z., Xu, J., Huang, Y.-Q., Okamura, T.-A., Liu, G.-X., Bai, Z.-S., Chen, M.-S., Chen, S.-S. & Sun, W.-Y. (2009). J. Solid State Chem. 182, 1417–1423.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812050672/zq2192sup1.cif

e-69-00m85-sup1.cif (15.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050672/zq2192Isup2.hkl

e-69-00m85-Isup2.hkl (103.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812050672/zq2192Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES