Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 9;69(Pt 2):m94. doi: 10.1107/S1600536813000330

Diaqua­bis­(1H-imidazole-4-carboxyl­ato-κ2 N 3,O)cobalt(II)

Beñat Artetxe a, Leire San Felices a, Aroa Pache a, Santiago Reinoso a, Juan M Gutiérrez-Zorrilla a,*
PMCID: PMC3569192  PMID: 23424436

Abstract

The title compound, [Co(C4H3N2O2)2(H2O)2], contains a CoII cation on a twofold rotation axis, exhibiting a distorted octa­hedral coordination geometry. The equatorial plane is formed by two N,O-bidentate 1H-imidazole-4-carboxyl­ate ligands and the axial positions are occupied by water mol­ecules. The crystal packing consists of a three-dimensional network stabilized by O—H⋯O and N—H⋯O hydrogen bonds, together with weak π–π inter­actions [centroid–centroid distance = 3.577 (2) Å] between the imidazole rings.

Related literature  

For the isostructural zinc(II) and cadmium(II) complexes, see: Yin et al. (2009); Shuai et al. (2011). For related homoleptic compounds, see: Kondo et al. (2003); Gryz et al. (2007); Zheng et al. (2011).graphic file with name e-69-00m94-scheme1.jpg

Experimental  

Crystal data  

  • [Co(C4H3N2O2)2(H2O)2]

  • M r = 317.13

  • Orthorhombic, Inline graphic

  • a = 7.1236 (16) Å

  • b = 11.6305 (2) Å

  • c = 13.5496 (4) Å

  • V = 1122.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.56 mm−1

  • T = 100 K

  • 0.09 × 0.04 × 0.03 mm

Data collection  

  • Agilent SuperNova (single source at offset) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.947, T max = 1.000

  • 2396 measured reflections

  • 1162 independent reflections

  • 1025 reflections with I > 2σ(I)

  • R int = 0.018

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.063

  • S = 1.08

  • 1162 reflections

  • 95 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000330/zj2099sup1.cif

e-69-00m94-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000330/zj2099Isup2.hkl

e-69-00m94-Isup2.hkl (56.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Co1—N3 2.0763 (17)
Co1—O1W 2.1074 (15)
Co1—O1 2.1774 (14)
N3—Co1—N3i 97.39 (9)
N3—Co1—O1W 98.62 (6)
N3—Co1—O1 78.47 (6)
O1W—Co1—O1 83.04 (6)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2ii 0.88 1.89 2.766 (2) 172
O1W—H1WA⋯O2iii 0.86 (2) 1.91 (2) 2.760 (2) 171 (3)
O1W—H1WB⋯O2iv 0.85 (2) 1.98 (2) 2.812 (2) 167 (2)

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was financially supported by Eusko Jaurlaritza/Gobierno Vasco (grant Nos. IT477-10 and S-PE11UN062) and the Universidad de País Vasco UPV/EHU (grant No. UFI11/53). BA and AP thank EJ/GV for their predoctoral fellowships.

supplementary crystallographic information

Comment

The title compound, [Co(C4H3N2O2)2(H2O)2] crystallizes in the orthorhombic crystal system, space group Pccn, and it is isostructural with the zinc and cadmium complexes previously reported by Yin et al. (2009) and Shuai et al. (2011). As expected, the Co—O and Co—N distances (Table 1) are similar to those of the ZnII analogue and shorter than those of the CdII derivative. Table 2 summarizes the geometrical parameters of the O—H···O and N—H···O hydrogen bonding interactions. The centroid-to-centroid distance between interacting imidazole rings is 3.577 (2) Å.

Experimental

To a solution of CoCl2.6H2O (12 mg, 0.05 mmol) in 15 ml of water 4-imidazole carboxylic acid (6 mg, 0.05 mmol) was added and the resulting solution was stirred for 30 min at room temperature. Prismatic red crystals were obtained by slow evaporation after several days. IR (cm-1): 3148 (s), 2934 (s), 1685 (m), 1588 (vs), 1555 (vs), 1528 (s), 1462 (s), 1406 (vs), 1333 (m), 1234 (s), 1177 (m), 1101 (m), 1005 (m), 930 (m), 845 (m), 820 (m), 791 (m), 731 (w), 658 (s), 610 (m), 492 (m).

Refinement

All atoms except H were refined anisotropically. H atoms of the water molecule were located in a Fourier difference map and refined isotropically with O—H bond lengths restrained to 0.84 (2) Å. All imidazole H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of [Co(C4H3N2O2)2(H2O)2] showing atom labelling for the asymmetric unit and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

View of the crystal packing along the crystallographic a axis (hydrogen bonds represented as dashed lines).

Crystal data

[Co(C4H3N2O2)2(H2O)2] F(000) = 644
Mr = 317.13 Dx = 1.876 Mg m3
Orthorhombic, Pccn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2ac Cell parameters from 1055 reflections
a = 7.1236 (16) Å θ = 1.8–28.1°
b = 11.6305 (2) Å µ = 1.56 mm1
c = 13.5496 (4) Å T = 100 K
V = 1122.6 (3) Å3 Prism, red
Z = 4 0.09 × 0.04 × 0.03 mm

Data collection

Agilent SuperNova (single source at offset) diffractometer 1162 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1025 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.018
Detector resolution: 16.2439 pixels mm-1 θmax = 26.5°, θmin = 3.0°
ω scans h = −8→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −10→14
Tmin = 0.947, Tmax = 1.000 l = −5→17
2396 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: difference Fourier map
wR(F2) = 0.063 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0201P)2 + 1.0008P] where P = (Fo2 + 2Fc2)/3
1162 reflections (Δ/σ)max < 0.001
95 parameters Δρmax = 0.32 e Å3
2 restraints Δρmin = −0.25 e Å3

Special details

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.75 0.25 0.13009 (3) 0.00874 (13)
O1W 0.8972 (2) 0.09575 (13) 0.15593 (11) 0.0140 (3)
O1 0.54278 (18) 0.17114 (12) 0.22690 (10) 0.0120 (3)
O2 0.26134 (18) 0.08371 (12) 0.22474 (10) 0.0113 (3)
N3 0.5553 (2) 0.18870 (15) 0.02894 (12) 0.0107 (4)
N1 0.3584 (2) 0.12877 (15) −0.08496 (13) 0.0125 (4)
H1 0.3094 0.1157 −0.1435 0.015*
C4 0.4058 (3) 0.13338 (17) 0.07356 (15) 0.0098 (4)
C6 0.4028 (3) 0.12899 (16) 0.18291 (15) 0.0096 (4)
C5 0.2836 (3) 0.09571 (18) 0.00325 (15) 0.0118 (4)
H5 0.1697 0.0549 0.0136 0.014*
C2 0.5204 (3) 0.18489 (18) −0.06678 (15) 0.0123 (4)
H2 0.5989 0.2173 −0.1162 0.015*
H1WA 1.007 (3) 0.099 (3) 0.180 (2) 0.047 (9)*
H1WB 0.847 (4) 0.050 (2) 0.1974 (17) 0.039 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0080 (2) 0.0098 (2) 0.0084 (2) −0.00165 (15) 0 0
O1W 0.0110 (8) 0.0146 (8) 0.0163 (8) −0.0018 (6) −0.0014 (7) 0.0039 (7)
O1 0.0102 (7) 0.0140 (7) 0.0116 (7) −0.0016 (6) −0.0011 (6) −0.0008 (6)
O2 0.0087 (7) 0.0137 (7) 0.0116 (7) −0.0007 (6) 0.0021 (6) 0.0019 (6)
N3 0.0095 (8) 0.0111 (9) 0.0115 (8) −0.0003 (7) 0.0013 (7) 0.0009 (7)
N1 0.0130 (9) 0.0151 (9) 0.0094 (8) −0.0007 (7) −0.0031 (7) −0.0005 (7)
C4 0.0101 (10) 0.0072 (10) 0.0120 (10) 0.0000 (8) 0.0007 (8) 0.0006 (8)
C6 0.0105 (10) 0.0071 (9) 0.0113 (10) 0.0041 (8) 0.0009 (8) 0.0000 (8)
C5 0.0122 (10) 0.0113 (10) 0.0118 (9) −0.0007 (8) 0.0012 (9) 0.0001 (9)
C2 0.0121 (10) 0.0137 (11) 0.0111 (10) −0.0008 (8) 0.0005 (8) 0.0009 (9)

Geometric parameters (Å, º)

Co1—N3 2.0763 (17) N3—C2 1.321 (3)
Co1—N3i 2.0763 (17) N3—C4 1.383 (2)
Co1—O1Wi 2.1074 (15) N1—C2 1.349 (3)
Co1—O1W 2.1074 (15) N1—C5 1.364 (3)
Co1—O1i 2.1774 (14) N1—H1 0.88
Co1—O1 2.1774 (14) C4—C5 1.363 (3)
O1W—H1WA 0.849 (17) C4—C6 1.483 (3)
O1W—H1WB 0.853 (17) C5—H5 0.95
O1—C6 1.261 (2) C2—H2 0.95
O2—C6 1.271 (2)
N3—Co1—N3i 97.39 (9) C2—N3—C4 105.60 (17)
N3—Co1—O1Wi 93.98 (6) C2—N3—Co1 141.72 (15)
N3i—Co1—O1Wi 98.62 (6) C4—N3—Co1 112.67 (13)
N3—Co1—O1W 98.62 (6) C2—N1—C5 108.11 (17)
N3i—Co1—O1W 93.98 (6) C2—N1—H1 125.9
O1Wi—Co1—O1W 160.87 (9) C5—N1—H1 125.9
N3—Co1—O1i 174.42 (6) C5—C4—N3 109.62 (18)
N3i—Co1—O1i 78.47 (6) C5—C4—C6 132.70 (18)
O1Wi—Co1—O1i 83.04 (6) N3—C4—C6 117.64 (17)
O1W—Co1—O1i 85.47 (6) O1—C6—O2 125.27 (18)
N3—Co1—O1 78.47 (6) O1—C6—C4 116.60 (17)
N3i—Co1—O1 174.42 (6) O2—C6—C4 118.13 (17)
O1Wi—Co1—O1 85.47 (6) C4—C5—N1 105.79 (17)
O1W—Co1—O1 83.04 (6) C4—C5—H5 127.1
O1i—Co1—O1 105.91 (7) N1—C5—H5 127.1
Co1—O1W—H1WA 119 (2) N3—C2—N1 110.87 (18)
Co1—O1W—H1WB 115.7 (19) N3—C2—H2 124.6
H1WA—O1W—H1WB 100 (3) N1—C2—H2 124.6
C6—O1—Co1 114.52 (12)
N3—Co1—O1—C6 −1.93 (13) Co1—N3—C4—C5 179.84 (13)
N3i—Co1—O1—C6 −44.3 (6) C2—N3—C4—C6 −177.35 (18)
O1Wi—Co1—O1—C6 93.08 (13) Co1—N3—C4—C6 1.8 (2)
O1W—Co1—O1—C6 −102.24 (13) Co1—O1—C6—O2 −176.57 (15)
O1i—Co1—O1—C6 174.51 (15) Co1—O1—C6—C4 3.4 (2)
N3i—Co1—N3—C2 −5.2 (2) C5—C4—C6—O1 178.9 (2)
O1Wi—Co1—N3—C2 94.1 (2) N3—C4—C6—O1 −3.6 (3)
O1W—Co1—N3—C2 −100.4 (2) C5—C4—C6—O2 −1.1 (3)
O1i—Co1—N3—C2 36.6 (7) N3—C4—C6—O2 176.37 (17)
O1—Co1—N3—C2 178.6 (2) N3—C4—C5—N1 −0.3 (2)
N3i—Co1—N3—C4 176.15 (16) C6—C4—C5—N1 177.4 (2)
O1Wi—Co1—N3—C4 −84.61 (14) C2—N1—C5—C4 −0.2 (2)
O1W—Co1—N3—C4 80.96 (14) C4—N3—C2—N1 −0.8 (2)
O1i—Co1—N3—C4 −142.1 (6) Co1—N3—C2—N1 −179.56 (16)
O1—Co1—N3—C4 −0.06 (13) C5—N1—C2—N3 0.7 (2)
C2—N3—C4—C5 0.7 (2)

Symmetry code: (i) −x+3/2, −y+1/2, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2ii 0.88 1.89 2.766 (2) 172
O1W—H1WA···O2iii 0.86 (2) 1.91 (2) 2.760 (2) 171 (3)
O1W—H1WB···O2iv 0.85 (2) 1.98 (2) 2.812 (2) 167 (2)

Symmetry codes: (ii) −x+1/2, y, z−1/2; (iii) x+1, y, z; (iv) x+1/2, −y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2099).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Gryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539–546.
  4. Kondo, M., Shimizu, E., Horiba, T., Tanaka, H., Fuwa, Y., Nabari, K., Unoura, K., Naito, T., Maeda, K. & Uchida, H. (2003). Chem. Lett. 32, 944–945.
  5. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shuai, W., Cai, S. & Zheng, S. (2011). Acta Cryst. E67, m897. [DOI] [PMC free article] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Yin, W.-P., Li, Y.-G., Mei, X.-L. & Yao, J.-C. (2009). Chin. J. Struct. Chem. 28, 1155–1159.
  10. Zheng, S., Cai, S., Fan, J. & Zhang, W. (2011). Acta Cryst. E67, m865. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000330/zj2099sup1.cif

e-69-00m94-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000330/zj2099Isup2.hkl

e-69-00m94-Isup2.hkl (56.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES