Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 16;69(Pt 2):m106–m107. doi: 10.1107/S1600536813000895

Tetra­methyl­ammonium aqua­trichlorido­oxalatostannate(IV) monohydrate

Yaya Sow a,*, Libasse Diop a, Kieran C Molloy b, Gabriele Kociok-Köhn b
PMCID: PMC3569201  PMID: 23424403

Abstract

The SnIV atom in the title compound, [(CH3)4N][Sn(C2O4)Cl3(H2O)]·H2O, obtained from the reaction between SnCl4 and [(CH3)4N]2C2O4·2H2O, is six-coordinated by three Cl atoms, an O atom of a water mol­ecule and two O atoms from an asymmetrically chelating oxalate anion. The environment around the SnIV atom is distorted octa­hedral. The anions are connected by the lattice water mol­ecule through O—H⋯O hydrogen bonds, leading to a layered structure parallel to (010). The cations are located between these layers and besides Coulombic forces are connected to the anionic layers through weak C—H⋯O and C—H⋯Cl inter­actions.

Related literature  

For background to halogentin(IV) chemistry, see: Hausen et al. (1986); Koutsantonis et al. (2003); Mahon et al. (2004); Patt-Siebel et al.(1986); Szymanska-Buzar et al. (2001); Tudela et al. (1986). For tin compounds containing an Sn—Cl bond in a cis- or trans-position, see: Fernandez et al. (2002); Hazell et al. (1998); Sow et al. (2010). For tin compounds containing carboxyl­ate moieties, see: Ng & Kumar Das (1993); Xu et al. (2003).graphic file with name e-69-0m106-scheme1.jpg

Experimental  

Crystal data  

  • (C4H12N)[Sn(C2O4)Cl3(H2O)]·H2O

  • M r = 423.24

  • Monoclinic, Inline graphic

  • a = 7.2458 (1) Å

  • b = 22.2812 (2) Å

  • c = 9.6019 (1) Å

  • β = 98.015 (1)°

  • V = 1535.04 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.20 mm−1

  • T = 150 K

  • 0.15 × 0.15 × 0.13 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995) T min = 0.734, T max = 0.763

  • 35849 measured reflections

  • 4445 independent reflections

  • 3855 reflections with I > 2σ(I)

  • R int = 0.042

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.062

  • S = 1.08

  • 4445 reflections

  • 175 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.79 e Å−3

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000895/wm2712sup1.cif

e-69-0m106-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000895/wm2712Isup2.hkl

e-69-0m106-Isup2.hkl (213.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H50A⋯O6 0.86 (2) 1.66 (2) 2.511 (2) 173 (3)
O5—H50B⋯O4i 0.85 (2) 1.78 (2) 2.6120 (19) 168 (3)
O6—H60B⋯O3ii 0.84 (2) 1.99 (2) 2.792 (2) 160 (3)
O6—H60A⋯O3iii 0.84 (2) 1.95 (2) 2.7840 (19) 172 (3)
O6—H60B⋯O4ii 0.84 (2) 2.47 (3) 2.993 (2) 122 (3)
C6—H6B⋯O6i 0.98 2.54 3.411 (3) 148
C6—H6A⋯Cl3iv 0.98 2.91 3.762 (3) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

Numerous crystal structures of SnX4 adducts (X = halogen) containing tin(IV) in an octahedral environment have been reported up to date, e.g. Hausen et al. (1986); Koutsantonis et al. (2003); Mahon et al. (2004); Patt-Siebel et al. (1986); Szymanska-Buzar et al. (2001); Tudela et al. (1986). Our group has previously reported the crystal structure of ((n-C3H7)2NH2)2[Sn(C2O4)Cl4] which contains a chelating oxalate anion, and the environment of tin(IV) being likewise octahedral (Sow et al., 2010). In the context of our search for new SnX4 adducts we report here the study of the reaction between ((CH3)4N)2C2O4.2H2O and SnCl4 which has yielded the title compound, ((CH3)4N)[Sn(C2O4)Cl3(H2O)].H2O. While many SnX4 adducts have been reported (see above), a complex with a [SnCl3]-containing residue is reported here.

The octahedral geometry around the tin(IV) atom is defined by three Cl atoms, two oxygen atoms from the chelating oxalate anion and the oxygen atom of a water molecule (Fig. 1). The two oxygen atoms from the oxalate anion and two of the Cl atoms are in the equatorial plane while the remaining Cl atom and the oxygen atom of the H2O molecule are in axial positions.

The [Sn(C2O4)Cl3(H2O)]- anions are connected to the lattice water molecule through H—O—H···OH2 hydrogen bonds. The water molecule bonded to the tin(IV) atom is also hydrogen-bonded to the O4 atom of a neighbour complex-anion. The lattice water molecule O6 is bonded to O3 and O4 of the same oxalate anion through a bifurcated hydrogen bond and to a O3 atom of a neighbouring oxalate anion, leading to a layered structure extending parallel to (010). The cations are located between the anionic planes (Figs. 2,3). In the crystal packing, C—H···O and C—H···Cl interactions between cations and anions are also observed (Table 1).

The angle O5—Sn—Cl3 [170.75°(5)] deviates from linearity. The two Sn—Cl bond lengths in the equatorial plane are very similar [Sn—Cl2 = 2.3598 (5), Sn—Cl1 = 2.3627 (5) Å], but different from the one trans to the water molecule [Sn—Cl3 = 2.3926 (5) Å], pointing to a weak trans-effect involving the latter. The Sn—O5 bond of 2.0781 (15) Å involving the water molecule is shorter than the Sn—O bonds distances involving the oxalate anion [Sn—O1 = 2.0980 (13); Sn—O2 = 2.1025 (13) Å], whereby these two last Sn—O distances are very close. The dimensions of Sn—O bonds and Sn—Cl bonds are in the range of Sn—O and Sn—Cl bonds reported for O2SnCl4 containing adducts with cis- or trans-geometry (Fernandez et al., 2002; Hazell et al., 1998; Sow et al., 2010).

The C—O distances [O1—C1 = 1.285 (2); O2—C2 = 1.288 (2) Å; O3—C1 = 1.219 (2) Å; O4—C2 = 1.223 (2) Å] are in the typical range of C—O and C═O bonds (Ng & Kumar Das, 1993; Xu et al., 2003).

Experimental

All chemicals were purchased from Aldrich (Germany) and used without any further purification. ((CH3)4N)2C2O4.2H2O has been obtained on allowing ((CH3)4N)OH as a 20% water solution to react with oxalic acid in a 2:1 ratio. A powder is obtained after evaporation of water at 333 K. On allowing the oxalic acid salt to react with SnCl4 in a 1:1 ratio in ethanol, a colorless solution is obtained, which gives, after slow solvent evaporation, crystals suitable for X-ray determination . The reaction equation of the title compound is: ((CH3)4N)2C2O4.2H2O + SnCl4→ ((CH3)4N)Cl + ((CH3)4N)[Sn(C2O4)Cl3H2O].H2O

Refinement

Water molecule hydrogen atoms have been located in the difference fourier map and were refined with an idealized bond lenght of 0.85 Å. The other hydrogen atoms have been placed onto calculated position and were refined using a riding model, with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The layered structure of the anions and the lattice water molecule parallel to (010). O—H···O hydrogen bonding interactions are shown as dashed lines.

Fig. 3.

Fig. 3.

The packing of the structure showing O—H···O hydrogen bonding interactions as dashed lines [C—H···O and C—H···Cl contacts are omitted for clarity].

Crystal data

(C4H12N)[Sn(C2O4)Cl3(H2O)]·H2O F(000) = 832
Mr = 423.24 Dx = 1.831 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 29534 reflections
a = 7.2458 (1) Å θ = 2.9–30.0°
b = 22.2812 (2) Å µ = 2.20 mm1
c = 9.6019 (1) Å T = 150 K
β = 98.015 (1)° Irregular, colourless
V = 1535.04 (3) Å3 0.15 × 0.15 × 0.13 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 4445 independent reflections
Radiation source: fine-focus sealed tube 3855 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
461 1.3 degree images with ω scans θmax = 30.0°, θmin = 4.2°
Absorption correction: multi-scan (SORTAV; Blessing, 1995) h = −10→10
Tmin = 0.734, Tmax = 0.763 k = −28→31
35849 measured reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.5616P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
4445 reflections Δρmax = 0.92 e Å3
175 parameters Δρmin = −0.79 e Å3
4 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0124 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn 0.834510 (17) 0.112222 (6) 0.679281 (12) 0.02693 (6)
Cl1 0.61541 (8) 0.13476 (3) 0.83233 (5) 0.03867 (12)
Cl2 0.66559 (8) 0.14793 (3) 0.46760 (5) 0.04369 (14)
Cl3 1.01222 (8) 0.20243 (2) 0.72319 (6) 0.04152 (13)
O5 0.7216 (2) 0.02693 (7) 0.64413 (15) 0.0372 (3)
O1 1.00588 (18) 0.07154 (6) 0.84708 (13) 0.0278 (3)
O3 1.2565 (2) 0.01364 (6) 0.89271 (13) 0.0310 (3)
O4 1.28776 (19) 0.01308 (7) 0.61246 (13) 0.0323 (3)
O2 1.04412 (18) 0.07556 (6) 0.57415 (13) 0.0285 (3)
O6 0.5915 (2) −0.03357 (7) 0.82856 (15) 0.0320 (3)
N 1.0670 (2) 0.16827 (7) 0.20003 (17) 0.0298 (3)
C1 1.1444 (2) 0.04194 (8) 0.81171 (17) 0.0241 (3)
C2 1.1635 (3) 0.04294 (8) 0.65224 (18) 0.0249 (3)
C3 0.9820 (3) 0.10701 (9) 0.1966 (3) 0.0370 (5)
H3A 0.8911 0.1053 0.2632 0.055*
H3B 1.0798 0.0771 0.2228 0.055*
H3C 0.9192 0.0985 0.1015 0.055*
C4 0.9184 (4) 0.21327 (11) 0.1570 (3) 0.0561 (7)
H4A 0.8558 0.2036 0.0624 0.084*
H4B 0.9739 0.2534 0.1566 0.084*
H4C 0.8274 0.2125 0.2235 0.084*
C5 1.1603 (4) 0.18245 (13) 0.3445 (2) 0.0500 (6)
H5A 1.2132 0.2230 0.3458 0.075*
H5B 1.2601 0.1533 0.3721 0.075*
H5C 1.0689 0.1804 0.4106 0.075*
C6 1.2081 (4) 0.17066 (11) 0.0997 (3) 0.0491 (6)
H6A 1.1482 0.1599 0.0051 0.074*
H6B 1.3090 0.1423 0.1300 0.074*
H6C 1.2592 0.2113 0.0984 0.074*
H50B 0.703 (4) 0.0121 (13) 0.562 (2) 0.058 (8)*
H60B 0.481 (3) −0.0227 (14) 0.829 (3) 0.057 (9)*
H60A 0.647 (4) −0.0270 (13) 0.909 (2) 0.053 (8)*
H50A 0.668 (4) 0.0068 (12) 0.704 (3) 0.059 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn 0.02791 (9) 0.02922 (8) 0.02369 (8) 0.00383 (4) 0.00368 (5) 0.00042 (4)
Cl1 0.0382 (3) 0.0436 (3) 0.0363 (3) 0.0062 (2) 0.0124 (2) −0.0069 (2)
Cl2 0.0376 (3) 0.0596 (3) 0.0325 (3) 0.0146 (2) 0.0002 (2) 0.0094 (2)
Cl3 0.0423 (3) 0.0295 (2) 0.0520 (3) −0.0019 (2) 0.0039 (2) 0.0029 (2)
O5 0.0468 (9) 0.0414 (8) 0.0256 (7) −0.0136 (7) 0.0122 (6) −0.0087 (6)
O1 0.0321 (7) 0.0308 (6) 0.0208 (6) 0.0045 (5) 0.0048 (5) −0.0001 (5)
O3 0.0316 (7) 0.0376 (7) 0.0230 (6) 0.0047 (6) 0.0014 (5) 0.0034 (5)
O4 0.0291 (7) 0.0442 (8) 0.0230 (6) 0.0069 (6) 0.0018 (5) −0.0051 (5)
O2 0.0287 (7) 0.0362 (7) 0.0209 (6) 0.0051 (5) 0.0040 (5) 0.0033 (5)
O6 0.0323 (8) 0.0396 (8) 0.0239 (7) 0.0062 (6) 0.0031 (6) 0.0003 (5)
N 0.0361 (9) 0.0254 (7) 0.0272 (8) −0.0021 (6) 0.0018 (6) −0.0007 (6)
C1 0.0268 (9) 0.0247 (8) 0.0205 (8) −0.0031 (6) 0.0024 (7) −0.0013 (6)
C2 0.0260 (9) 0.0281 (8) 0.0199 (8) −0.0025 (7) 0.0014 (6) −0.0014 (6)
C3 0.0409 (12) 0.0269 (9) 0.0445 (12) −0.0048 (8) 0.0106 (10) −0.0014 (8)
C4 0.0539 (15) 0.0325 (12) 0.0774 (19) 0.0084 (10) −0.0061 (13) 0.0040 (11)
C5 0.0551 (15) 0.0598 (15) 0.0319 (11) −0.0207 (12) −0.0052 (10) 0.0029 (10)
C6 0.0646 (16) 0.0399 (12) 0.0477 (13) −0.0152 (11) 0.0249 (12) −0.0067 (10)

Geometric parameters (Å, º)

Sn—O5 2.0781 (15) N—C3 1.496 (2)
Sn—O1 2.0980 (13) N—C6 1.500 (3)
Sn—O2 2.1025 (13) C1—C2 1.557 (2)
Sn—Cl2 2.3598 (5) C3—H3A 0.9800
Sn—Cl1 2.3627 (5) C3—H3B 0.9800
Sn—Cl3 2.3926 (5) C3—H3C 0.9800
O5—H50B 0.850 (17) C4—H4A 0.9800
O5—H50A 0.859 (17) C4—H4B 0.9800
O1—C1 1.285 (2) C4—H4C 0.9800
O3—C1 1.219 (2) C5—H5A 0.9800
O4—C2 1.223 (2) C5—H5B 0.9800
O2—C2 1.288 (2) C5—H5C 0.9800
O6—H60B 0.836 (17) C6—H6A 0.9800
O6—H60A 0.836 (17) C6—H6B 0.9800
N—C4 1.488 (3) C6—H6C 0.9800
N—C5 1.490 (3)
O5—Sn—O1 84.67 (6) O1—C1—C2 115.63 (15)
O5—Sn—O2 82.02 (6) O4—C2—O2 126.11 (16)
O1—Sn—O2 79.11 (5) O4—C2—C1 118.03 (16)
O5—Sn—Cl2 91.33 (5) O2—C2—C1 115.85 (15)
O1—Sn—Cl2 170.93 (4) N—C3—H3A 109.5
O2—Sn—Cl2 92.30 (4) N—C3—H3B 109.5
O5—Sn—Cl1 90.68 (4) H3A—C3—H3B 109.5
O1—Sn—Cl1 89.50 (4) N—C3—H3C 109.5
O2—Sn—Cl1 166.95 (4) H3A—C3—H3C 109.5
Cl2—Sn—Cl1 98.70 (2) H3B—C3—H3C 109.5
O5—Sn—Cl3 170.75 (5) N—C4—H4A 109.5
O1—Sn—Cl3 88.93 (4) N—C4—H4B 109.5
O2—Sn—Cl3 90.23 (4) H4A—C4—H4B 109.5
Cl2—Sn—Cl3 94.03 (2) N—C4—H4C 109.5
Cl1—Sn—Cl3 95.95 (2) H4A—C4—H4C 109.5
Sn—O5—H50B 121 (2) H4B—C4—H4C 109.5
Sn—O5—H50A 125 (2) N—C5—H5A 109.5
H50B—O5—H50A 113 (3) N—C5—H5B 109.5
C1—O1—Sn 114.77 (11) H5A—C5—H5B 109.5
C2—O2—Sn 114.29 (11) N—C5—H5C 109.5
H60B—O6—H60A 107 (3) H5A—C5—H5C 109.5
C4—N—C5 109.4 (2) H5B—C5—H5C 109.5
C4—N—C3 109.18 (18) N—C6—H6A 109.5
C5—N—C3 110.24 (17) N—C6—H6B 109.5
C4—N—C6 109.2 (2) H6A—C6—H6B 109.5
C5—N—C6 109.25 (18) N—C6—H6C 109.5
C3—N—C6 109.49 (16) H6A—C6—H6C 109.5
O3—C1—O1 124.90 (16) H6B—C6—H6C 109.5
O3—C1—C2 119.47 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H50A···O6 0.86 (2) 1.66 (2) 2.511 (2) 173 (3)
O5—H50B···O4i 0.85 (2) 1.78 (2) 2.6120 (19) 168 (3)
O6—H60B···O3ii 0.84 (2) 1.99 (2) 2.792 (2) 160 (3)
O6—H60A···O3iii 0.84 (2) 1.95 (2) 2.7840 (19) 172 (3)
O6—H60B···O4ii 0.84 (2) 2.47 (3) 2.993 (2) 122 (3)
C6—H6B···O6i 0.98 2.54 3.411 (3) 148
C6—H6A···Cl3iv 0.98 2.91 3.762 (3) 146

Symmetry codes: (i) −x+2, −y, −z+1; (ii) x−1, y, z; (iii) −x+2, −y, −z+2; (iv) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2712).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Fernandez, D., Garcia-Seijo, M. I., Kegl, T., Petocz, G., Kollar, L. & Garcia-Fernandez, M. E. (2002). Inorg. Chem. 41, 4435–4443. [DOI] [PubMed]
  5. Hausen, H.-D., Schwarz, W., Ragca, G. & Weidlein, J. (1986). Z. Naturforsch. Teil B, 41, 1223–1229.
  6. Hazell, A., Khoo, L. E., Ouyang, J., Rausch, B. J. & Tavares, Z. M. (1998). Acta Cryst. C54, 728–732.
  7. Koutsantonis, G. A., Morien, T. S., Skelton, B. W. & White, A. H. (2003). Acta Cryst. C59, m361–m365. [DOI] [PubMed]
  8. Mahon, M. F., Moldovan, N. L., Molloy, K. C., Muresan, A., Silaghi-Dumitrescu, I. & Silaghi-Dumitrescu, L. (2004). J. Chem. Soc. Dalton Trans. 23, 4017–4021. [DOI] [PubMed]
  9. Ng, S. W. & Kumar Das, V. G. (1993). Main Group Met. Chem. 16, 87–93.
  10. Nonius (1999). COLLECT Nonius BV, Delft, The Netherlands.
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Patt-Siebel, U., Ruangsuttinarupap, S., Müller, U., Pebler, J. & Dehnicke, K. (1986). Z. Naturforsch. Teil B, 41, 1191–1195.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sow, Y., Diop, L., Kociock-Köhn, G. & Molloy, K. C. (2010). Main Group Met. Chem. 33, 205–207.
  15. Szymanska-Buzar, T., Glowiak, T. & Czelusnuak, I. (2001). Main Group Met. Chem. 24, 821–822.
  16. Tudela, D. V., Fernadez, V., Tomero, J. D. & Vegas, A. (1986). Z. Anorg. Allg. Chem. 532, 215–224.
  17. Xu, T., Yang, S.-Y., Xie, Z.-X. & Ng, S. W. (2003). Acta Cryst. E59, m873–m875.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000895/wm2712sup1.cif

e-69-0m106-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000895/wm2712Isup2.hkl

e-69-0m106-Isup2.hkl (213.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES