Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 19;69(Pt 2):m109. doi: 10.1107/S1600536813001086

Dichlorido(2,9-dimethyl-1,10-phenanthroline-κ2 N,N′)mercury(II)

Ismail Warad a, Mousa Al-Noaimi b,*, Salim F Haddad c, Rema Othman d
PMCID: PMC3569203  PMID: 23424405

Abstract

The title compound, [HgCl2(C14H12N2)], consists of one 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand chelating the HgII ion and two chloride ligands coordinating to the HgII ion, forming a distorted tetra­hedral environment. The dmphen ligand is nearly planar (r.m.s. deviation = 0.0225 Å). The dihedral angle between the normal to the plane defined by the HgII atom and the two Cl atoms and the normal to the plane of the dmphen ring is 81.8 (1)°.

Related literature  

For related structures, see Alizadeh (2009); Alizadeh et al. (2009); Wang & Zhong (2009); Warad et al. (2011). For properties and application of mercury(II) complexes, see: Ramazani et al. (2005); Mahjoub et al. (2004); Canty & Maker (1976); Canty & Lee (1982).graphic file with name e-69-0m109-scheme1.jpg

Experimental  

Crystal data  

  • [HgCl2(C14H12N2)]

  • M r = 479.75

  • Monoclinic, Inline graphic

  • a = 7.5732 (13) Å

  • b = 10.3733 (16) Å

  • c = 18.673 (2) Å

  • β = 94.308 (12)°

  • V = 1462.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.87 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection  

  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.106, T max = 0.140

  • 5483 measured reflections

  • 2564 independent reflections

  • 1758 reflections with I > 2σ(I)

  • R int = 0.061

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.128

  • S = 0.99

  • 2564 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 1.81 e Å−3

  • Δρmin = −1.83 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001086/br2220sup1.cif

e-69-0m109-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001086/br2220Isup2.hkl

e-69-0m109-Isup2.hkl (126KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The project was supported by King Saud University (KSA) and Hashemite University (Jordan). The X-ray structural work was done at Hamdi Mango Center for Scientific Research at The University of Jordan, Amman 11942, Jordan.

supplementary crystallographic information

Comment

The coordination chemistry of mercury(II) with N-donor ligands is of interest due to applications as solid-state materials (Ramazani et al., 2005; Mahjoub et al., 2004). Hg(II) complexes with bidentate ligands have been obtained in which Hg(II) adopts higher coordination numbers such as complexes of 1,10-phenanthroline (Canty & Maker, 1976) and N-substituted pyrazole (Canty & Lee, 1982). The molecular structure of [HgCl2(C14H12N2)], along with the numbering scheme is shown in Fig. 1. HgCl2 is chelated by the bidentate phenanthroline molecule and that the coordination of the nitrogen and chlorine atoms about the Hg atom is essentially a distorted tetrahedral environment (Fig. 1).

Experimental

The desired complex was prepared by mixting of mercury chloride (HgCl2, 39.7 mg,0.14 mmol) in methanol (10 ml) with dmphen (32.0 mg, 0.15 mmol) in dichloromethane (5 ml) is stirred for one houre at room temperature. The obtained solution was concentrated to about 2 ml underreduced pressure and mixed to 30 ml of diethyl ether. The white precipitate was filtered and dried. suitable colourless crystals were obtained by slow diffusion of diethyl ether into a solution of the complex in dichloromethane.

Refinement

All nonhydrogen atoms were refined anisotropically.H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). Highest difference peak and hole are 1.81 and -1.83e/Å3 close to the Hg atom.

Figures

Fig. 1.

Fig. 1.

An ORTEP (Burnett & Johnson, 1996) view of Hg(Cl)2(dmphen). Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

[HgCl2(C14H12N2)] F(000) = 896
Mr = 479.75 Dx = 2.178 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1534 reflections
a = 7.5732 (13) Å θ = 2.9–29.0°
b = 10.3733 (16) Å µ = 10.87 mm1
c = 18.673 (2) Å T = 293 K
β = 94.308 (12)° Block, colourless
V = 1462.8 (4) Å3 0.22 × 0.20 × 0.18 mm
Z = 4

Data collection

Agilent Xcalibur Eos diffractometer 2564 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1758 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.061
Detector resolution: 16.0534 pixels mm-1 θmax = 25.0°, θmin = 2.9°
ω scans h = −9→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −12→12
Tmin = 0.106, Tmax = 0.140 l = −16→22
5483 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0521P)2] where P = (Fo2 + 2Fc2)/3
2564 reflections (Δ/σ)max < 0.001
174 parameters Δρmax = 1.81 e Å3
0 restraints Δρmin = −1.83 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Hg1 0.21008 (6) 0.28289 (4) 0.39470 (2) 0.0597 (2)
Cl1 −0.0404 (4) 0.3290 (4) 0.31096 (16) 0.0818 (10)
Cl2 0.4266 (5) 0.4523 (3) 0.39503 (19) 0.0871 (11)
C5 0.3385 (16) −0.2144 (11) 0.4986 (7) 0.063 (3)
H5A 0.3736 −0.3002 0.4975 0.076*
N1 0.2952 (11) 0.0704 (7) 0.3787 (4) 0.047 (2)
C1 0.3465 (14) 0.0196 (11) 0.3185 (6) 0.057 (3)
C10 0.1290 (15) 0.2260 (10) 0.5625 (7) 0.055 (3)
C11 0.2939 (12) −0.0049 (11) 0.4375 (5) 0.048 (2)
C3 0.3905 (15) −0.1866 (12) 0.3704 (7) 0.060 (3)
H3A 0.4210 −0.2731 0.3670 0.072*
C8 0.1676 (15) 0.0244 (12) 0.6240 (6) 0.067 (3)
H8A 0.1636 −0.0247 0.6655 0.080*
C12 0.2350 (11) 0.0470 (11) 0.5026 (5) 0.048 (3)
N2 0.1849 (11) 0.1747 (8) 0.5019 (4) 0.045 (2)
C7 0.2276 (13) −0.0328 (10) 0.5619 (6) 0.052 (3)
C14 0.0775 (16) 0.3651 (12) 0.5595 (6) 0.073 (4)
H14A 0.1822 0.4176 0.5615 0.110*
H14B 0.0100 0.3853 0.5995 0.110*
H14C 0.0073 0.3819 0.5155 0.110*
C4 0.3430 (13) −0.1380 (10) 0.4363 (6) 0.052 (3)
C2 0.3929 (15) −0.1104 (11) 0.3118 (7) 0.066 (3)
H2A 0.4245 −0.1434 0.2683 0.080*
C6 0.2834 (14) −0.1637 (11) 0.5598 (7) 0.062 (3)
H6A 0.2820 −0.2147 0.6007 0.074*
C9 0.1155 (14) 0.1497 (14) 0.6246 (5) 0.061 (3)
H9A 0.0715 0.1850 0.6654 0.074*
C13 0.3475 (18) 0.1076 (12) 0.2547 (6) 0.083 (4)
H13A 0.3449 0.0572 0.2116 0.124*
H13B 0.4528 0.1594 0.2587 0.124*
H13C 0.2453 0.1626 0.2532 0.124*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg1 0.0813 (4) 0.0419 (4) 0.0565 (3) 0.0057 (2) 0.0083 (3) 0.00836 (19)
Cl1 0.075 (2) 0.111 (3) 0.0590 (19) 0.016 (2) 0.0022 (15) 0.0250 (18)
Cl2 0.106 (3) 0.0474 (18) 0.107 (3) −0.0145 (19) 0.003 (2) 0.0152 (18)
C5 0.070 (8) 0.046 (8) 0.075 (9) −0.002 (6) 0.009 (6) 0.023 (7)
N1 0.056 (5) 0.033 (5) 0.051 (5) −0.001 (4) 0.002 (4) −0.003 (4)
C1 0.061 (7) 0.052 (7) 0.059 (7) 0.003 (6) 0.014 (5) 0.003 (6)
C10 0.053 (7) 0.047 (7) 0.065 (8) 0.003 (5) 0.007 (5) −0.008 (6)
C11 0.037 (6) 0.056 (7) 0.049 (6) −0.003 (5) −0.001 (4) 0.003 (6)
C3 0.050 (7) 0.049 (7) 0.080 (9) 0.007 (5) −0.004 (6) −0.003 (7)
C8 0.071 (8) 0.066 (8) 0.062 (8) −0.016 (7) −0.002 (6) 0.017 (7)
C12 0.020 (5) 0.060 (7) 0.062 (7) −0.006 (5) −0.007 (4) 0.008 (6)
N2 0.051 (5) 0.043 (5) 0.041 (5) −0.006 (4) 0.004 (4) −0.002 (4)
C7 0.062 (7) 0.038 (6) 0.055 (7) −0.007 (5) 0.001 (5) 0.015 (5)
C14 0.078 (9) 0.088 (10) 0.055 (7) 0.002 (8) 0.015 (6) −0.021 (7)
C4 0.042 (6) 0.036 (6) 0.077 (8) −0.007 (5) 0.000 (5) 0.005 (6)
C2 0.076 (9) 0.057 (8) 0.065 (8) 0.015 (7) −0.001 (6) −0.016 (7)
C6 0.048 (7) 0.060 (8) 0.075 (9) −0.014 (6) −0.006 (6) 0.030 (7)
C9 0.051 (7) 0.099 (10) 0.035 (6) −0.009 (7) 0.007 (4) 0.005 (7)
C13 0.133 (13) 0.059 (8) 0.061 (8) 0.001 (8) 0.031 (8) 0.006 (7)

Geometric parameters (Å, º)

Hg1—N2 2.314 (8) C3—C4 1.401 (15)
Hg1—N1 2.322 (8) C3—H3A 0.9300
Hg1—Cl2 2.403 (3) C8—C9 1.359 (16)
Hg1—Cl1 2.414 (3) C8—C7 1.408 (15)
C5—C6 1.352 (16) C8—H8A 0.9300
C5—C4 1.410 (15) C12—N2 1.378 (13)
C5—H5A 0.9300 C12—C7 1.386 (13)
N1—C1 1.326 (12) C7—C6 1.424 (15)
N1—C11 1.348 (12) C14—H14A 0.9600
C1—C2 1.402 (15) C14—H14B 0.9600
C1—C13 1.501 (15) C14—H14C 0.9600
C10—N2 1.348 (13) C2—H2A 0.9300
C10—C9 1.414 (15) C6—H6A 0.9300
C10—C14 1.494 (15) C9—H9A 0.9300
C11—C4 1.430 (14) C13—H13A 0.9600
C11—C12 1.432 (13) C13—H13B 0.9600
C3—C2 1.350 (16) C13—H13C 0.9600
N2—Hg1—N1 72.1 (3) C10—N2—C12 118.3 (9)
N2—Hg1—Cl2 116.9 (2) C10—N2—Hg1 125.9 (7)
N1—Hg1—Cl2 119.9 (2) C12—N2—Hg1 115.8 (6)
N2—Hg1—Cl1 123.0 (2) C12—C7—C8 116.1 (10)
N1—Hg1—Cl1 108.5 (2) C12—C7—C6 121.2 (11)
Cl2—Hg1—Cl1 111.07 (13) C8—C7—C6 122.6 (10)
C6—C5—C4 120.5 (11) C10—C14—H14A 109.5
C6—C5—H5A 119.8 C10—C14—H14B 109.5
C4—C5—H5A 119.8 H14A—C14—H14B 109.5
C1—N1—C11 118.8 (9) C10—C14—H14C 109.5
C1—N1—Hg1 126.0 (7) H14A—C14—H14C 109.5
C11—N1—Hg1 115.2 (7) H14B—C14—H14C 109.5
N1—C1—C2 123.3 (10) C3—C4—C5 123.1 (10)
N1—C1—C13 116.8 (10) C3—C4—C11 116.5 (10)
C2—C1—C13 119.9 (10) C5—C4—C11 120.4 (10)
N2—C10—C9 120.9 (10) C3—C2—C1 118.2 (11)
N2—C10—C14 116.5 (10) C3—C2—H2A 120.9
C9—C10—C14 122.5 (10) C1—C2—H2A 120.9
N1—C11—C4 121.9 (9) C5—C6—C7 120.3 (11)
N1—C11—C12 119.7 (10) C5—C6—H6A 119.8
C4—C11—C12 118.4 (10) C7—C6—H6A 119.8
C2—C3—C4 121.4 (11) C8—C9—C10 119.3 (11)
C2—C3—H3A 119.3 C8—C9—H9A 120.3
C4—C3—H3A 119.3 C10—C9—H9A 120.3
C9—C8—C7 121.5 (11) C1—C13—H13A 109.5
C9—C8—H8A 119.3 C1—C13—H13B 109.5
C7—C8—H8A 119.3 H13A—C13—H13B 109.5
N2—C12—C7 123.7 (10) C1—C13—H13C 109.5
N2—C12—C11 117.1 (9) H13A—C13—H13C 109.5
C7—C12—C11 119.1 (10) H13B—C13—H13C 109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2220).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Alizadeh, R. (2009). Acta Cryst. E65, m817–m818. [DOI] [PMC free article] [PubMed]
  3. Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483–m484. [DOI] [PMC free article] [PubMed]
  4. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  5. Canty, A. J. & Lee, C. V. (1982). Organometallics, 1, 1063–1066.
  6. Canty, A. J. & Maker, A. (1976). Inorg. Chem. 15, 425–430.
  7. Mahjoub, A., Morsali, A. & Nejad, R. (2004). Z. Naturforsch. Teil B, 59, 1109–1113.
  8. Ramazani, A., Morsali, A., Dolatyari, L. & Ganjeie, B. (2005). Z. Naturforsch. Teil B, 60, 289–293.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wang, B. S. & Zhong, H. (2009). Acta Cryst. E65, m1156. [DOI] [PMC free article] [PubMed]
  11. Warad, I., Boshaala, A., Al-Resayes, S. I., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1650. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001086/br2220sup1.cif

e-69-0m109-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001086/br2220Isup2.hkl

e-69-0m109-Isup2.hkl (126KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES