Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 19;69(Pt 2):m119–m120. doi: 10.1107/S1600536813001438

catena-Poly[[[(2,2′-bipyridine-κ2 N,N′)manganese(II)]-μ-(2,5-dichloro-3,6-dioxocyclo­hexa-1,4-diene-1,4-diolato)-κ4 O 1,O 6:O 3,O 4] ethanol disolvate]

Yuji Nishimura a, Akiko Himegi a, Akira Fuyuhiro b, Shinya Hayami c, Satoshi Kawata a,*
PMCID: PMC3569209  PMID: 23424411

Abstract

The asymmetric unit of the title coordination polymer, {[Mn(C6Cl2O4)(C10H8N2)]·2C2H5OH}n, consists of one MnII ion, one 2,2′-bipyridine (bpy) ligand, one chloranilate (CA2−) ligand and two ethanol solvent mol­ecules. The MnII ion is octa­hedrally coordinated by two N atoms of one bpy ligand and four O atoms of two chloranilate ions. The chloranilate ion serves as a bridging ligand between the MnII ions, leading to an infinite zigzag chain along [101]. π–π stacking inter­actions [centroid–centroid distance = 4.098 (2) Å] is observed between the pyridine rings of adjacent chains. The ethanol mol­ecules act as accepters as well as donors for O—H⋯O hydrogen bonds, and form a hydrogen-bonded chain along the a axis. The H atoms of the hy­droxy groups of the two independent ethanol mol­ecules are each disordered over two sites with equal occupancies.

Related literature  

For related structures, see: Nagayoshi et al. (2003); Decurtins et al. (1996); Deguenon et al. (1990); Kabir et al. (2001); Zheng et al. (1996).graphic file with name e-69-0m119-scheme1.jpg

Experimental  

Crystal data  

  • [Mn(C6Cl2O4)(C10H8N2)]·2C2H6O

  • M r = 510.22

  • Monoclinic, Inline graphic

  • a = 8.3130 (15) Å

  • b = 20.866 (4) Å

  • c = 12.513 (2) Å

  • β = 97.665 (2)°

  • V = 2151.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 100 K

  • 0.40 × 0.10 × 0.05 mm

Data collection  

  • Rigaku Saturn724 diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998) T min = 0.897, T max = 0.956

  • 24503 measured reflections

  • 4903 independent reflections

  • 4526 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.089

  • S = 1.10

  • 4903 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001438/is5235sup1.cif

e-69-0m119-sup1.cif (28.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001438/is5235Isup2.hkl

e-69-0m119-Isup2.hkl (240.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mn1—O1 2.1796 (14)
Mn1—O2 2.1546 (14)
Mn1—O3i 2.1511 (14)
Mn1—O4i 2.1782 (14)
Mn1—N1 2.2473 (16)
Mn1—N2 2.2398 (16)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O6 0.84 1.91 2.716 (4) 160
O5—H4⋯O5ii 0.84 2.00 2.715 (4) 142
O6—H2⋯O6iii 0.84 1.83 2.661 (3) 170
O6—H3⋯O5 0.84 1.90 2.716 (4) 162

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by funds (No. 101501) from the Central Research Institute of Fukuoka University and Grant-in-Aids for Science Research (No. 22550067) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

supplementary crystallographic information

Comment

In this paper manganese assembled structures of chloranilic acid (H2CA = 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) are rationally designed by using bpy. Chloranilic acid can coordinate to metal ions in both the bidentate and the bisbidentate fashions (Nagayoshi et al., 2003). The dianion of chloranilic acid consists of two allyl systems connected by C—C single bonds, with four oxygen atoms partially negatively charged. This potentiality allows for the coordination of transition-metal ions through CA2- bridges and permits the probable propagation of magnetic super-exchange interactions between the paramagnetic centers. These kind of complexes using manganese two ions and H2CA were reported previously (Kabir et al., 2001). We report here, {[Mn(C10H8N2)(C6Cl2O4)].(C2H6O)2}n (1), which consists of the Mn(II) one-dimensional chain complex and two ethanol solvent molecules. The manganese(II) ion has a distorted octahedral environment, caused by fairly small bite angles of N—Mn—N [73.06 (7)°] and O—Mn—O [74.62 (5), 74.60 (5)°]. The latter compares with that in [Mn(bpy)CA]n (2) (Zheng, et al., 1996) [73.67 (7)°] but is smaller than that of O—Cu—O [77.31 (4)°] in [Cu(DCMB)(CA)]n (DCMB = 3,3'-dicarbomethoxy-2,2'-bipyridine) (Decurtins et al., 1996). The Mn—N distances [2.2472 (18) and 2.2397 (18) Å] agree well with those in [Mn(bpy)(C2O4)]n (Deguenon et al., 1990), (2.241, 2.258 Å) and the average Mn—O length (2.166 Å) is compatible with that in 2 (2.180 Å). Overall, the determined Mn—N and Mn—O bond lengths are in agreement with dipositive charged manganese ions as coordination centres. The CA2- bridges Mn(II) ions, which leads to infinite chains exhibiting a zig-zag pattern with bipyridine ligands stacking between the chains. The nearest C–C distance of the stacked bipyridine ligands is 3.607 (3) Å. This stacking interaction makes two-dimensional packing structure. This Mn···Mn [8.131 (1) Å] separation is a little smaller than the Mn···Mn [8.170 Å] separation in the chain of 2. The chain complex was assembled in the bc plane to form a one-dimensional channel along the a axis. The crystal structures of 1, 2 and [Mn(CA)(terpy)]n (terpy = 2,2:6,2-terpyridine) are similar. However, only compound 1 contains two ethanol solvents as solvent molecules. Interstitial solvents are introduced to the channel constructed by the assembling of one-dimensional chains to make a clathrate. Two ethanol solvent molecules are connected through hydrogen bonding, and form a one-dimensional chain along the a axis. As a result, voids of compound 1 is expanded by introduction of solvents into the clathrate.

Experimental

A mixture of MnCl2.4H2O (1 ml, 5 mmolL-1) in aqueous solution and 2,2'-bipyridine (1 ml, 5 mmolL-1) in ethanol solution was transferred to a glass tube, and then an ethanol solution (10 ml) of H2CA (2 ml, 5 mmolL-1) was poured into the tube without mixing the two solutions. Dark violet crystals began to form at ambient temperature in a one week. One of these crystals was used for X-ray crystallography.

Refinement

The C-bound H atoms in the bpy and the methyl group of the ethanol molecule were placed at calculated positions with C—H = 0.95 and 0.98 Å, respectively, and were treated as riding on their parent atoms with Uiso(H) set to 1.2Ueq(C). Both of the hydrogen atoms on the hydroxy groups of the ethanol solvent molecules are disordered over two sites, each with an occupancy of 0.5 and were treated as riding on their parent oxygen atoms, with O—H = 0.84 Å and with Uiso(H) set to 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

An ORTEP drawing for the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A fragment of one-dimensional channel structure of the title compound along the a axis. H atoms have been omitted for clarity.

Fig. 3.

Fig. 3.

A partial packing view of the title compound, showing the ethanol solvent molecules forming a one-dimensional chain along the a axis through hydrogen bonds. The hydrogen bonds are shown as dashed lines. H atoms have been omitted for clarity.

Crystal data

[Mn(C6Cl2O4)(C10H8N2)]·2C2H6O F(000) = 1044
Mr = 510.22 Dx = 1.575 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2yn Cell parameters from 6299 reflections
a = 8.3130 (15) Å θ = 3.2–27.5°
b = 20.866 (4) Å µ = 0.90 mm1
c = 12.513 (2) Å T = 100 K
β = 97.665 (2)° Platelet, violet
V = 2151.2 (7) Å3 0.40 × 0.10 × 0.05 mm
Z = 4

Data collection

Rigaku Saturn724 diffractometer 4903 independent reflections
Radiation source: fine-focus sealed tube 4526 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
Detector resolution: 7.111 pixels mm-1 θmax = 27.5°, θmin = 3.2°
ω scans h = −10→10
Absorption correction: multi-scan (REQAB; Rigaku, 1998) k = −27→26
Tmin = 0.897, Tmax = 0.956 l = −16→16
24503 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0369P)2 + 2.5077P] where P = (Fo2 + 2Fc2)/3
4903 reflections (Δ/σ)max = 0.002
284 parameters Δρmax = 0.99 e Å3
0 restraints Δρmin = −0.57 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Mn1 0.26466 (3) 0.152282 (13) 0.52153 (2) 0.01343 (8)
Cl1 0.34709 (5) 0.29498 (2) 0.19487 (4) 0.01890 (11)
Cl2 −0.31626 (5) 0.22151 (2) 0.36711 (4) 0.02093 (11)
O1 0.29779 (16) 0.21863 (6) 0.39171 (11) 0.0173 (3)
O2 0.02350 (16) 0.18152 (6) 0.45478 (10) 0.0160 (3)
O3 0.00620 (16) 0.32640 (6) 0.09766 (10) 0.0157 (3)
O4 −0.26694 (16) 0.29681 (7) 0.16927 (11) 0.0180 (3)
O5 0.4059 (3) 0.44845 (11) 0.46828 (18) 0.0517 (5)
H1 0.3160 0.4420 0.4900 0.078* 0.50
H4 0.4601 0.4714 0.5151 0.078* 0.50
O6 0.0886 (3) 0.44697 (10) 0.49882 (18) 0.0513 (5)
H2 0.0270 0.4791 0.4920 0.077* 0.50
H3 0.1820 0.4395 0.4833 0.077* 0.50
N1 0.32635 (19) 0.07145 (8) 0.41547 (13) 0.0169 (3)
N2 0.19315 (19) 0.06124 (8) 0.59751 (13) 0.0169 (3)
C1 0.1713 (2) 0.23827 (9) 0.33539 (14) 0.0141 (3)
C2 0.1669 (2) 0.27578 (9) 0.24228 (15) 0.0147 (3)
C3 0.0202 (2) 0.29465 (8) 0.18379 (14) 0.0132 (3)
C4 −0.1402 (2) 0.27663 (8) 0.22528 (15) 0.0139 (3)
C5 −0.1360 (2) 0.23993 (9) 0.31882 (15) 0.0153 (3)
C6 0.0100 (2) 0.21788 (8) 0.37393 (14) 0.0142 (3)
C7 0.3914 (3) 0.07952 (10) 0.32347 (16) 0.0221 (4)
H7 0.4180 0.1217 0.3031 0.026*
C8 0.4214 (3) 0.02880 (11) 0.25711 (17) 0.0264 (4)
H8 0.4677 0.0361 0.1927 0.032*
C9 0.3826 (3) −0.03242 (11) 0.28672 (18) 0.0275 (5)
H9 0.4012 −0.0680 0.2425 0.033*
C10 0.3160 (3) −0.04169 (10) 0.38176 (17) 0.0233 (4)
H10 0.2891 −0.0835 0.4036 0.028*
C11 0.2895 (2) 0.01144 (9) 0.44437 (15) 0.0166 (4)
C12 0.2186 (2) 0.00567 (9) 0.54702 (15) 0.0167 (4)
C13 0.1817 (3) −0.05325 (10) 0.58966 (17) 0.0228 (4)
H13 0.1999 −0.0919 0.5530 0.027*
C14 0.1180 (3) −0.05466 (11) 0.68661 (18) 0.0279 (5)
H14 0.0931 −0.0944 0.7175 0.033*
C15 0.0909 (3) 0.00214 (11) 0.73776 (18) 0.0271 (5)
H15 0.0468 0.0022 0.8040 0.033*
C16 0.1296 (3) 0.05905 (10) 0.69034 (16) 0.0222 (4)
H16 0.1102 0.0982 0.7251 0.027*
C17 0.4877 (4) 0.38834 (13) 0.4599 (2) 0.0414 (6)
H17A 0.5837 0.3952 0.4222 0.050*
H17B 0.4138 0.3584 0.4158 0.050*
C18 0.5409 (5) 0.35873 (16) 0.5669 (3) 0.0669 (11)
H18A 0.5981 0.3185 0.5571 0.080*
H18B 0.4458 0.3499 0.6032 0.080*
H18C 0.6138 0.3882 0.6110 0.080*
C19 −0.0048 (5) 0.39086 (16) 0.4859 (3) 0.0585 (8)
H19A −0.0062 0.3750 0.4113 0.070*
H19B −0.1180 0.4012 0.4963 0.070*
C20 0.0558 (6) 0.33965 (17) 0.5616 (3) 0.0766 (12)
H20A −0.0281 0.3067 0.5625 0.092*
H20B 0.0828 0.3577 0.6341 0.092*
H20C 0.1531 0.3204 0.5385 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.01400 (15) 0.01304 (14) 0.01278 (14) 0.00029 (10) 0.00001 (10) −0.00026 (10)
Cl1 0.0120 (2) 0.0238 (2) 0.0214 (2) −0.00032 (16) 0.00420 (16) 0.00607 (17)
Cl2 0.0124 (2) 0.0278 (2) 0.0233 (2) 0.00060 (17) 0.00476 (17) 0.00960 (18)
O1 0.0127 (6) 0.0198 (7) 0.0188 (6) 0.0002 (5) 0.0003 (5) 0.0053 (5)
O2 0.0151 (6) 0.0169 (6) 0.0157 (6) 0.0001 (5) 0.0015 (5) 0.0043 (5)
O3 0.0147 (6) 0.0172 (6) 0.0150 (6) −0.0001 (5) 0.0012 (5) 0.0029 (5)
O4 0.0134 (6) 0.0224 (7) 0.0181 (6) 0.0009 (5) 0.0011 (5) 0.0060 (5)
O5 0.0511 (12) 0.0525 (12) 0.0534 (12) 0.0145 (10) 0.0140 (10) 0.0084 (10)
O6 0.0492 (12) 0.0384 (10) 0.0683 (14) −0.0091 (9) 0.0155 (11) 0.0082 (10)
N1 0.0168 (8) 0.0171 (8) 0.0164 (7) 0.0001 (6) 0.0008 (6) −0.0016 (6)
N2 0.0171 (8) 0.0160 (7) 0.0174 (7) 0.0005 (6) 0.0013 (6) 0.0004 (6)
C1 0.0127 (8) 0.0139 (8) 0.0153 (8) 0.0002 (6) 0.0009 (6) −0.0009 (7)
C2 0.0113 (8) 0.0171 (8) 0.0164 (8) −0.0012 (7) 0.0040 (7) 0.0016 (7)
C3 0.0143 (8) 0.0117 (8) 0.0136 (8) −0.0005 (6) 0.0021 (6) −0.0008 (6)
C4 0.0125 (8) 0.0132 (8) 0.0159 (8) −0.0010 (6) 0.0018 (7) −0.0012 (7)
C5 0.0113 (8) 0.0179 (9) 0.0169 (8) −0.0005 (7) 0.0027 (7) 0.0021 (7)
C6 0.0153 (9) 0.0137 (8) 0.0138 (8) −0.0017 (7) 0.0023 (7) −0.0015 (6)
C7 0.0256 (10) 0.0226 (10) 0.0184 (9) 0.0004 (8) 0.0041 (8) 0.0001 (8)
C8 0.0305 (11) 0.0302 (11) 0.0192 (10) 0.0039 (9) 0.0062 (8) −0.0048 (8)
C9 0.0334 (12) 0.0244 (10) 0.0243 (10) 0.0072 (9) 0.0025 (9) −0.0086 (8)
C10 0.0270 (11) 0.0169 (9) 0.0247 (10) 0.0042 (8) −0.0007 (8) −0.0036 (8)
C11 0.0151 (9) 0.0160 (9) 0.0176 (9) 0.0016 (7) −0.0020 (7) −0.0016 (7)
C12 0.0153 (9) 0.0152 (9) 0.0185 (9) −0.0004 (7) −0.0016 (7) 0.0006 (7)
C13 0.0263 (11) 0.0157 (9) 0.0257 (10) −0.0017 (8) 0.0010 (8) 0.0003 (8)
C14 0.0334 (12) 0.0221 (10) 0.0278 (11) −0.0061 (9) 0.0030 (9) 0.0045 (8)
C15 0.0319 (12) 0.0280 (11) 0.0226 (10) −0.0043 (9) 0.0076 (9) 0.0033 (8)
C16 0.0259 (10) 0.0218 (10) 0.0194 (9) −0.0003 (8) 0.0042 (8) −0.0004 (8)
C17 0.0538 (17) 0.0398 (14) 0.0322 (13) −0.0009 (12) 0.0117 (12) −0.0033 (11)
C18 0.116 (3) 0.0443 (17) 0.0475 (18) 0.0256 (19) 0.038 (2) 0.0151 (14)
C19 0.067 (2) 0.0472 (17) 0.059 (2) −0.0157 (16) 0.0020 (16) 0.0035 (15)
C20 0.133 (4) 0.0471 (19) 0.051 (2) −0.001 (2) 0.020 (2) −0.0120 (16)

Geometric parameters (Å, º)

Mn1—O1 2.1796 (14) C11—C12 1.488 (3)
Mn1—O2 2.1546 (14) C12—C13 1.391 (3)
Mn1—O3i 2.1511 (14) C13—C14 1.387 (3)
Mn1—O4i 2.1782 (14) C14—C15 1.380 (3)
Mn1—N1 2.2473 (16) C15—C16 1.384 (3)
Mn1—N2 2.2398 (16) C17—C18 1.488 (4)
Cl1—C2 1.7304 (18) C19—C20 1.471 (5)
Cl2—C5 1.7322 (18) O5—H1 0.840
O1—C1 1.254 (2) O5—H4 0.840
O2—C6 1.258 (2) O6—H2 0.840
O3—C3 1.257 (2) O6—H3 0.840
O3—Mn1ii 2.1510 (13) C7—H7 0.950
O4—C4 1.257 (2) C8—H8 0.950
O4—Mn1ii 2.1782 (14) C9—H9 0.950
O5—C17 1.437 (3) C10—H10 0.950
O6—C19 1.402 (4) C13—H13 0.950
N1—C7 1.346 (3) C14—H14 0.950
N1—C11 1.350 (2) C15—H15 0.950
N2—C16 1.340 (3) C16—H16 0.950
N2—C12 1.351 (2) C17—H17A 0.990
C1—C2 1.400 (3) C17—H17B 0.990
C1—C6 1.544 (2) C18—H18A 0.980
C2—C3 1.392 (3) C18—H18B 0.980
C3—C4 1.541 (2) C18—H18C 0.980
C4—C5 1.395 (3) C19—H19A 0.990
C5—C6 1.392 (3) C19—H19B 0.990
C7—C8 1.388 (3) C20—H20A 0.980
C8—C9 1.380 (3) C20—H20B 0.980
C9—C10 1.391 (3) C20—H20C 0.980
C10—C11 1.392 (3) H2—H2iii 1.0155 (1)
O3i—Mn1—O2 151.46 (5) N2—C12—C11 116.06 (16)
O3i—Mn1—O4i 74.60 (5) C13—C12—C11 122.40 (17)
O2—Mn1—O4i 88.83 (5) C14—C13—C12 118.93 (19)
O3i—Mn1—O1 89.74 (5) C15—C14—C13 119.5 (2)
O2—Mn1—O1 74.62 (5) C14—C15—C16 118.5 (2)
O4i—Mn1—O1 111.37 (6) N2—C16—C15 122.82 (19)
O3i—Mn1—N2 105.80 (6) O5—C17—C18 112.5 (2)
O2—Mn1—N2 96.82 (5) O6—C19—C20 113.3 (3)
O4i—Mn1—N2 89.11 (6) C17—O5—H1 109.5
O1—Mn1—N2 157.24 (6) C17—O5—H4 109.5
O3i—Mn1—N1 98.26 (5) C19—O6—H2 109.5
O2—Mn1—N1 104.92 (6) C19—O6—H3 109.5
O4i—Mn1—N1 158.45 (6) N1—C7—H7 118.629
O1—Mn1—N1 88.57 (6) C8—C7—H7 118.631
N2—Mn1—N1 73.05 (6) C7—C8—H8 120.730
C1—O1—Mn1 116.52 (12) C9—C8—H8 120.716
C6—O2—Mn1 117.46 (12) C8—C9—H9 120.253
C3—O3—Mn1ii 117.58 (12) C10—C9—H9 120.256
C4—O4—Mn1ii 116.71 (12) C9—C10—H10 120.608
C7—N1—C11 118.46 (17) C11—C10—H10 120.605
C7—N1—Mn1 124.09 (13) C12—C13—H13 120.536
C11—N1—Mn1 117.40 (12) C14—C13—H13 120.531
C16—N2—C12 118.74 (17) C13—C14—H14 120.253
C16—N2—Mn1 123.70 (13) C15—C14—H14 120.257
C12—N2—Mn1 117.55 (12) C14—C15—H15 120.770
O1—C1—C2 125.27 (17) C16—C15—H15 120.765
O1—C1—C6 115.62 (16) N2—C16—H16 118.596
C2—C1—C6 119.11 (16) C15—C16—H16 118.588
C3—C2—C1 121.31 (16) O5—C17—H17A 109.084
C3—C2—Cl1 119.45 (14) O5—C17—H17B 109.087
C1—C2—Cl1 119.14 (14) C18—C17—H17A 109.089
O3—C3—C2 125.04 (17) C18—C17—H17B 109.086
O3—C3—C4 115.60 (16) H17A—C17—H17B 107.842
C2—C3—C4 119.36 (16) C17—C18—H18A 109.466
O4—C4—C5 125.24 (17) C17—C18—H18B 109.469
O4—C4—C3 115.39 (16) C17—C18—H18C 109.469
C5—C4—C3 119.37 (16) H18A—C18—H18B 109.486
C6—C5—C4 121.33 (17) H18A—C18—H18C 109.468
C6—C5—Cl2 119.44 (14) H18B—C18—H18C 109.470
C4—C5—Cl2 119.23 (14) O6—C19—H19A 108.909
O2—C6—C5 125.20 (17) O6—C19—H19B 108.914
O2—C6—C1 115.45 (16) C20—C19—H19A 108.916
C5—C6—C1 119.36 (16) C20—C19—H19B 108.918
N1—C7—C8 122.74 (19) H19A—C19—H19B 107.740
C9—C8—C7 118.6 (2) C19—C20—H20A 109.468
C8—C9—C10 119.49 (19) C19—C20—H20B 109.476
C9—C10—C11 118.79 (19) C19—C20—H20C 109.478
N1—C11—C10 121.97 (18) H20A—C20—H20B 109.465
N1—C11—C12 115.88 (16) H20A—C20—H20C 109.470
C10—C11—C12 122.15 (18) H20B—C20—H20C 109.470
N2—C12—C13 121.54 (18) O6iii—H2—H2 161.01 (15)

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H1···O6 0.84 1.91 2.716 (4) 160
O5—H4···O5iv 0.84 2.00 2.715 (4) 142
O6—H2···O6iii 0.84 1.83 2.661 (3) 170
O6—H3···O5 0.84 1.90 2.716 (4) 162

Symmetry codes: (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5235).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
  2. Decurtins, S., Schmalle, H. W., Zheng, L.-M. & Ensling, J. (1996). Inorg. Chim. Acta, 244, 165–170.
  3. Deguenon, D., Bernardinelli, G., Tuchagues, J.-P. & Castan, J.-P. (1990). Inorg. Chem. 29, 3031–3037.
  4. Kabir, M. K., Kawahara, M., Kumagai, H., Adachi, K., Kawata, S., Ishii, T. & Kitagawa, S. (2001). Polyhedron, 20, 1417–1422.
  5. Nagayoshi, K., Kabir, M. K., Tobita, H., Honda, K., Kawahara, M., Katada, M., Adachi, K., Nishikawa, H., Ikemoto, I., Kumagai, H., Hosokoshi, Y., Inoue, K., Kitagawa, S. & Kawata, S. (2003). J. Am. Chem. Soc. 125, 221–232. [DOI] [PubMed]
  6. Rigaku (1998). REQAB Rigaku Corporation, Tokyo, Japan.
  7. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  8. Rigaku (2010). Crystal Structure Rigaku Corporation, Tokyo, Japan.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Zheng, L.-M., Schmalle, H. W., Huber, R. & Decurtins, S. (1996). Polyhedron, 15, 4399–4405.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001438/is5235sup1.cif

e-69-0m119-sup1.cif (28.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001438/is5235Isup2.hkl

e-69-0m119-Isup2.hkl (240.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES