Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 4;69(Pt 2):o177. doi: 10.1107/S1600536812051586

(1E,4E)-1,5-Bis[2-(trifluoro­meth­yl)phen­yl]penta-1,4-dien-3-one

Dong Ho Park a, V Ramkumar b, P Parthiban a,*
PMCID: PMC3569239  PMID: 23424462

Abstract

In the title compound, C19H12F6O, a monoketone derivative of curcumin, both double bonds have a trans conformation. The mol­ecule is mostly planar with all C and O atoms essentially coplanar, with the exception of one benzene ring, which is tilted by 17.18 (1)° with respect to the plane of the remainder of the mol­ecule. The r.m.s. deviation from planarity of the coplanar section is 0.0097 Å. The crystal packing features weak C—H⋯O and C—H⋯F inter­actions.

Related literature  

For the synthesis of chalcones, see: Tully et al. (2001). For the biological properties of chalcones, see: Buescher & Yang (2000); Kumar et al. (2003), Hsu & Cheng (2007). For their physical properties, see: Fichou et al. (1988); Butcher et al. (2006). For similar structures, see: Butcher et al. (2007); Nizam Mohideen et al. (2007); Harrison et al. (2006).graphic file with name e-69-0o177-scheme1.jpg

Experimental  

Crystal data  

  • C19H12F6O

  • M r = 370.29

  • Monoclinic, Inline graphic

  • a = 11.3123 (12) Å

  • b = 4.7907 (4) Å

  • c = 15.1697 (16) Å

  • β = 101.834 (3)°

  • V = 804.63 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 298 K

  • 0.35 × 0.25 × 0.10 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.952, T max = 0.986

  • 5185 measured reflections

  • 2608 independent reflections

  • 1931 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.096

  • S = 1.04

  • 2608 reflections

  • 235 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812051586/zl2522sup1.cif

e-69-0o177-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051586/zl2522Isup2.hkl

e-69-0o177-Isup2.hkl (128.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051586/zl2522Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯F3i 0.93 2.62 3.399 (4) 141 (2)
C1—H1⋯O1ii 0.93 2.72 3.290 (5) 121 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

supplementary crystallographic information

Comment

The title compound is a bischalcone, and is a monoketone derivative of curcumin. Curcumin is a naturally abundant beta-diketone derived from the rizome of curcuma longa (Buescher & Yang, 2000). Numerous studies have shown that curcumin possesses multiple pharmacological properties. Several clinical trials of curcumin were carried out in patients with pancreatic cancer, multiple myeloma, rheumatoid arthritis, cystic fibrosis, inflammatory bowel disease, psoriasis, and other disorders (Kumar et al., 2003; Hsu & Cheng, 2007). Since the stereochemistry of the synthesized molecule is an important criterion for its biological actions, it is of of desirable to establish the structure of the synthesized molecule.

Crystalline chalcone derivatives are also of interest due to their their second harmonic generation properties, particularly, their often are good blue light emitters. The NLO properties of the molecules are also associated with their molecular geometry (Fichou et al., 1988; Butcher et al., 2006), and accordingly, a single-crystal XRD study of the title bischalcone was undertaken to obtain detailed information on its molecular conformation.

In the title compound, C19H12F6O, both double bonds have trans configuration. The molecule is mostly planar with all carbon and oxygen atoms coplanar with the exception of one phenyl ring (C1—C6), which is tilted by 17.18 (1)° against the plane of the remainder of the molecule. The root mean square deviation from planarity of the coplanar section Ph—C=C—C(O)—C=C (C8—C18) is 0.0097 Å.

The bond lengths of the conjugated chalcone backbone C5—C13 [C5–C8 = 1.460 (4), C8–C9 = 1.322 (4), C9–C10 = 1.460 (4), C10–C11 = 1.470 (4), C11–C12 = 1.311 (4) and C12–C13 = 1.456 Å] show alternate localized single and double bonds as in its ortho-chloro analog (Nizam Mohideen et al., 2007). This indicates the absence of delocalization of the double bonds in the chalcone skeleton C5—C13.

The crystal packing of this molecule is stabilized by weak intermolecular C—H···O, C—H···F and C—H···π interactions (Table 1).

Experimental

The title compound, 1,5-bis(2-(trifluoromethyl)phenyl)penta-1,4-dien-3-one was synthesized by a modified procedure of Tully et al. (2001) using the milder base ammonium acetate instead of sodium hydroxide and a better yield (86%) was obtained. 20 mmol of 2-trifluoromethylbenzaldehyde (2.634 ml), 15 mmol of acetone (1.11 ml) and 1 g of ammonium acetate were combined in one-pot and stirred gently in ethanol as the solvent (20 ml). The complete consumption of the starting materials was monitored by TLC. After completion, the reaction mass was filtered, washed with cold ethanol and dried. The compound was characterized by melting point, IR and NMR. The analytical and spectral data are as reported previously (Tully et al., 2001). X-ray diffraction quality crystals of the title compound were obtained by slow evaporation of an ethanol solution.

Refinement

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Anistropic displacement representation of the molecule with atoms represented with 30% probability ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram showing C—H···O, C—H···F and C—H···π interactions.

Crystal data

C19H12F6O F(000) = 376
Mr = 370.29 Dx = 1.528 Mg m3
Monoclinic, Pc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yc Cell parameters from 2360 reflections
a = 11.3123 (12) Å θ = 2.7–24.1°
b = 4.7907 (4) Å µ = 0.14 mm1
c = 15.1697 (16) Å T = 298 K
β = 101.834 (3)° Block, colourless
V = 804.63 (14) Å3 0.35 × 0.25 × 0.10 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer 2608 independent reflections
Radiation source: fine-focus sealed tube 1931 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
phi and ω scans θmax = 27.8°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −14→14
Tmin = 0.952, Tmax = 0.986 k = −5→5
5185 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.2469P] where P = (Fo2 + 2Fc2)/3
2608 reflections (Δ/σ)max < 0.001
235 parameters Δρmax = 0.20 e Å3
2 restraints Δρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.1775 (4) 1.5554 (9) 1.1292 (2) 0.0761 (11)
H1 1.1342 1.5756 1.1747 0.091*
C2 1.2832 (4) 1.6949 (8) 1.1343 (2) 0.0784 (11)
H2 1.3110 1.8160 1.1819 0.094*
C3 1.3481 (3) 1.6560 (7) 1.0689 (2) 0.0673 (9)
H3 1.4220 1.7461 1.0736 0.081*
C4 1.3062 (3) 1.4847 (6) 0.9956 (2) 0.0501 (7)
C5 1.1957 (2) 1.3456 (6) 0.98898 (19) 0.0466 (7)
C6 1.1349 (3) 1.3854 (7) 1.0575 (2) 0.0619 (9)
H6 1.0619 1.2933 1.0549 0.074*
C7 1.3802 (3) 1.4515 (8) 0.9268 (2) 0.0654 (10)
C8 1.1460 (3) 1.1721 (7) 0.9110 (2) 0.0533 (8)
H8 1.1829 1.1877 0.8618 0.064*
C9 1.0547 (3) 0.9955 (7) 0.9024 (2) 0.0508 (8)
H9 1.0168 0.9688 0.9507 0.061*
C10 1.0119 (3) 0.8412 (7) 0.8190 (2) 0.0492 (7)
C11 0.9120 (3) 0.6426 (6) 0.81579 (19) 0.0505 (8)
H11 0.8802 0.6177 0.8671 0.061*
C12 0.8662 (3) 0.4996 (6) 0.7433 (2) 0.0478 (7)
H12 0.9004 0.5317 0.6934 0.057*
C13 0.7685 (2) 0.2965 (6) 0.73090 (18) 0.0420 (6)
C14 0.7286 (2) 0.1566 (6) 0.64946 (17) 0.0428 (7)
C15 0.6361 (3) −0.0368 (6) 0.6405 (2) 0.0540 (8)
H15 0.6105 −0.1284 0.5859 0.065*
C16 0.5820 (3) −0.0946 (7) 0.7110 (2) 0.0617 (9)
H16 0.5208 −0.2272 0.7047 0.074*
C17 0.6184 (3) 0.0439 (7) 0.7910 (2) 0.0595 (8)
H17 0.5806 0.0084 0.8388 0.071*
C18 0.7107 (3) 0.2348 (7) 0.80077 (19) 0.0518 (8)
H18 0.7351 0.3253 0.8557 0.062*
C19 0.7851 (3) 0.2061 (7) 0.5705 (2) 0.0578 (8)
F1 1.3299 (2) 1.5590 (5) 0.84801 (15) 0.0944 (7)
F2 1.4881 (2) 1.5699 (6) 0.94957 (17) 0.1057 (9)
F3 1.4031 (2) 1.1853 (6) 0.9114 (2) 0.1095 (9)
F4 0.7781 (2) 0.4718 (5) 0.54360 (14) 0.0860 (7)
F5 0.89964 (19) 0.1390 (5) 0.58521 (14) 0.0902 (7)
F6 0.7316 (2) 0.0638 (5) 0.49807 (13) 0.0954 (7)
O1 1.0559 (2) 0.8784 (5) 0.75344 (16) 0.0824 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.083 (3) 0.090 (3) 0.058 (2) −0.016 (2) 0.0204 (19) −0.011 (2)
C2 0.096 (3) 0.076 (3) 0.059 (2) −0.025 (2) 0.005 (2) −0.0118 (19)
C3 0.063 (2) 0.073 (2) 0.060 (2) −0.0199 (18) −0.0003 (17) 0.0054 (19)
C4 0.0462 (15) 0.0481 (18) 0.0545 (18) −0.0042 (14) 0.0065 (13) 0.0089 (15)
C5 0.0479 (17) 0.0427 (17) 0.0481 (17) 0.0016 (13) 0.0076 (14) 0.0024 (14)
C6 0.061 (2) 0.068 (2) 0.058 (2) −0.0144 (16) 0.0168 (16) −0.0079 (17)
C7 0.057 (2) 0.067 (3) 0.073 (2) −0.0142 (19) 0.0140 (17) −0.0020 (19)
C8 0.0503 (17) 0.054 (2) 0.0572 (19) −0.0016 (15) 0.0149 (14) −0.0019 (15)
C9 0.0577 (18) 0.0486 (18) 0.0474 (17) −0.0004 (14) 0.0138 (14) −0.0002 (13)
C10 0.0544 (18) 0.0456 (19) 0.0466 (17) 0.0013 (14) 0.0080 (14) −0.0025 (14)
C11 0.0614 (19) 0.0500 (19) 0.0408 (17) −0.0002 (15) 0.0124 (14) −0.0058 (13)
C12 0.0562 (18) 0.0440 (18) 0.0439 (16) −0.0005 (14) 0.0119 (14) −0.0004 (13)
C13 0.0470 (15) 0.0385 (16) 0.0404 (15) 0.0054 (13) 0.0089 (12) −0.0002 (12)
C14 0.0504 (16) 0.0353 (16) 0.0416 (16) 0.0080 (13) 0.0070 (13) −0.0015 (12)
C15 0.0589 (18) 0.0463 (18) 0.0511 (18) 0.0045 (16) −0.0021 (15) −0.0066 (15)
C16 0.0523 (18) 0.056 (2) 0.074 (2) −0.0040 (16) 0.0067 (16) 0.0041 (17)
C17 0.0603 (19) 0.060 (2) 0.062 (2) 0.0020 (17) 0.0219 (16) 0.0124 (17)
C18 0.0622 (19) 0.0524 (19) 0.0420 (17) −0.0007 (15) 0.0134 (14) −0.0028 (14)
C19 0.070 (2) 0.056 (2) 0.0466 (19) 0.0075 (17) 0.0097 (16) −0.0062 (16)
F1 0.1087 (16) 0.114 (2) 0.0642 (14) −0.0084 (15) 0.0272 (12) 0.0071 (13)
F2 0.0714 (14) 0.133 (2) 0.120 (2) −0.0401 (15) 0.0359 (13) −0.0138 (16)
F3 0.1025 (17) 0.0725 (17) 0.176 (3) 0.0065 (13) 0.0802 (17) −0.0137 (16)
F4 0.135 (2) 0.0631 (15) 0.0670 (12) 0.0083 (14) 0.0377 (12) 0.0116 (11)
F5 0.0785 (14) 0.1231 (19) 0.0772 (13) 0.0270 (13) 0.0352 (11) −0.0012 (14)
F6 0.1393 (18) 0.0984 (17) 0.0467 (11) −0.0143 (15) 0.0144 (12) −0.0244 (12)
O1 0.0925 (18) 0.0963 (19) 0.0667 (16) −0.0401 (16) 0.0356 (14) −0.0247 (14)

Geometric parameters (Å, º)

C1—C2 1.358 (5) C10—C11 1.470 (4)
C1—C6 1.366 (5) C11—C12 1.310 (4)
C1—H1 0.9300 C11—H11 0.9300
C2—C3 1.362 (5) C12—C13 1.456 (4)
C2—H2 0.9300 C12—H12 0.9300
C3—C4 1.385 (4) C13—C18 1.386 (4)
C3—H3 0.9300 C13—C14 1.397 (4)
C4—C5 1.401 (4) C14—C15 1.383 (4)
C4—C7 1.474 (5) C14—C19 1.488 (4)
C5—C6 1.372 (4) C15—C16 1.364 (4)
C5—C8 1.460 (4) C15—H15 0.9300
C6—H6 0.9300 C16—C17 1.371 (5)
C7—F1 1.318 (4) C16—H16 0.9300
C7—F2 1.326 (4) C17—C18 1.373 (4)
C7—F3 1.331 (4) C17—H17 0.9300
C8—C9 1.321 (4) C18—H18 0.9300
C8—H8 0.9300 C19—F5 1.309 (4)
C9—C10 1.460 (4) C19—F6 1.329 (4)
C9—H9 0.9300 C19—F4 1.334 (4)
C10—O1 1.213 (4)
C2—C1—C6 120.1 (4) C9—C10—C11 118.2 (3)
C2—C1—H1 119.9 C12—C11—C10 122.4 (3)
C6—C1—H1 119.9 C12—C11—H11 118.8
C1—C2—C3 119.4 (3) C10—C11—H11 118.8
C1—C2—H2 120.3 C11—C12—C13 128.1 (3)
C3—C2—H2 120.3 C11—C12—H12 115.9
C2—C3—C4 121.2 (3) C13—C12—H12 115.9
C2—C3—H3 119.4 C18—C13—C14 117.2 (3)
C4—C3—H3 119.4 C18—C13—C12 120.6 (2)
C3—C4—C5 119.5 (3) C14—C13—C12 122.3 (3)
C3—C4—C7 118.8 (3) C15—C14—C13 120.6 (3)
C5—C4—C7 121.7 (3) C15—C14—C19 118.0 (3)
C6—C5—C4 117.3 (3) C13—C14—C19 121.4 (3)
C6—C5—C8 121.5 (3) C16—C15—C14 120.8 (3)
C4—C5—C8 121.2 (3) C16—C15—H15 119.6
C1—C6—C5 122.4 (3) C14—C15—H15 119.6
C1—C6—H6 118.8 C15—C16—C17 119.6 (3)
C5—C6—H6 118.8 C15—C16—H16 120.2
F1—C7—F2 105.8 (3) C17—C16—H16 120.2
F1—C7—F3 106.2 (3) C16—C17—C18 120.1 (3)
F2—C7—F3 104.7 (3) C16—C17—H17 120.0
F1—C7—C4 113.4 (3) C18—C17—H17 120.0
F2—C7—C4 113.3 (3) C17—C18—C13 121.8 (3)
F3—C7—C4 112.7 (3) C17—C18—H18 119.1
C9—C8—C5 127.5 (3) C13—C18—H18 119.1
C9—C8—H8 116.3 F5—C19—F6 106.4 (3)
C5—C8—H8 116.3 F5—C19—F4 106.3 (3)
C8—C9—C10 121.6 (3) F6—C19—F4 104.4 (3)
C8—C9—H9 119.2 F5—C19—C14 113.4 (3)
C10—C9—H9 119.2 F6—C19—C14 112.7 (3)
O1—C10—C9 121.2 (3) F4—C19—C14 112.9 (3)
O1—C10—C11 120.7 (3)
C6—C1—C2—C3 −2.3 (6) O1—C10—C11—C12 −0.3 (5)
C1—C2—C3—C4 2.4 (6) C9—C10—C11—C12 178.6 (3)
C2—C3—C4—C5 −0.9 (5) C10—C11—C12—C13 179.6 (3)
C2—C3—C4—C7 179.7 (4) C11—C12—C13—C18 0.5 (4)
C3—C4—C5—C6 −0.7 (4) C11—C12—C13—C14 −179.6 (3)
C7—C4—C5—C6 178.6 (3) C18—C13—C14—C15 −0.7 (4)
C3—C4—C5—C8 177.5 (3) C12—C13—C14—C15 179.5 (3)
C7—C4—C5—C8 −3.1 (4) C18—C13—C14—C19 −179.5 (3)
C2—C1—C6—C5 0.7 (6) C12—C13—C14—C19 0.6 (4)
C4—C5—C6—C1 0.8 (5) C13—C14—C15—C16 0.0 (4)
C8—C5—C6—C1 −177.4 (3) C19—C14—C15—C16 178.9 (3)
C3—C4—C7—F1 −113.3 (3) C14—C15—C16—C17 1.1 (5)
C5—C4—C7—F1 67.3 (4) C15—C16—C17—C18 −1.5 (5)
C3—C4—C7—F2 7.4 (5) C16—C17—C18—C13 0.8 (5)
C5—C4—C7—F2 −172.0 (3) C14—C13—C18—C17 0.2 (4)
C3—C4—C7—F3 126.0 (3) C12—C13—C18—C17 −179.9 (3)
C5—C4—C7—F3 −53.4 (4) C15—C14—C19—F5 −117.0 (3)
C6—C5—C8—C9 −13.8 (5) C13—C14—C19—F5 61.9 (4)
C4—C5—C8—C9 168.1 (3) C15—C14—C19—F6 4.0 (4)
C5—C8—C9—C10 178.0 (3) C13—C14—C19—F6 −177.1 (3)
C8—C9—C10—O1 −2.9 (5) C15—C14—C19—F4 121.9 (3)
C8—C9—C10—C11 178.3 (3) C13—C14—C19—F4 −59.2 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C17—H17···F3i 0.93 2.62 3.399 (4) 141 (2)
C1—H1···O1ii 0.93 2.72 3.290 (5) 121 (1)
C3—H3···Cg1 0.93 3.32 (2) 4.096 (3) 142 (1)

Symmetry codes: (i) x−1, y−1, z; (ii) x, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2522).

References

  1. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Buescher, R. & Yang, L. (2000). Turmeric in Natural Food Colorants, edited by G. J. Lauro & F. J. Francis, pp. 205–226. New York: Marcel Dekker.
  3. Butcher, R. J., Jasinski, J. P., Sarojini, B. K., Yathirajan, H. S., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o3213–o3214.
  4. Butcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Mithun, A. (2006). Acta Cryst. E62, o1629–o1630.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, 429–430.
  7. Harrison, W. T. A., Sarojini, B. K., Vijaya Raj, K. K., Yathirajan, H. S. & Narayana, B. (2006). Acta Cryst. E62, o1522–o1523.
  8. Hsu, C. H. & Cheng, A. L. (2007). Adv. Exp. Med. Biol. 595, 471–480. [DOI] [PubMed]
  9. Kumar, A. P., Aggarwal, B. B. & Bharti, A. C. (2003). Anticancer Res. 23, 363–398. [PubMed]
  10. Nizam Mohideen, M., Thenmozhi, S., Subbiah Pandi, A., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4379.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Tully, W., Main, L. & Nicholson, B. K. (2001). J. Organomet. Chem. 633, 162–172.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812051586/zl2522sup1.cif

e-69-0o177-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051586/zl2522Isup2.hkl

e-69-0o177-Isup2.hkl (128.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051586/zl2522Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES