Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 4;69(Pt 2):o179. doi: 10.1107/S1600536812051574

2,4,6,8-Tetra­kis(2-fluoro­phen­yl)-3,7-diaza­bicyclo­[3.3.1]nonan-9-one

Dong Ho Park a, V Ramkumar b, P Parthiban a,*
PMCID: PMC3569241  PMID: 23424464

Abstract

The title compound, C31H24F4N2O, exists in a chair–boat conformation with an equatorial orientation of the 2-fluoro­phenyl groups on both sides of the secondary amino group of the chair form. The benzene rings in the ‘chair’ part are inclined to each other at 19.4 (1)°, while the equivalent angle between the benzene rings in the ‘boat’ part is 75.6 (1)°. One F atom was treated as disordered over two positions in a 0.838 (4):0.162 (4) ratio. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into chains along [001] and these chains are held together via weak N—H⋯F and C—H⋯F inter­actions.

Related literature  

For the synthesis and stereochemistry of 3,7-diaza­bicyclo­[3.3.1]nonan-9-ones, see: Parthiban et al. (2008). For the biological activity of 3,7-diaza­bicyclo­[3.3.1]nonan-9-one derivatives and related structures, see: Park et al. (2012); Parthiban et al. (2009, 2010); Asakawa (1995); Jeyaraman & Avila (1981). For ring puckering parameters, see: Cremer & Pople (1975).graphic file with name e-69-0o179-scheme1.jpg

Experimental  

Crystal data  

  • C31H24F4N2O

  • M r = 516.52

  • Monoclinic, Inline graphic

  • a = 12.5610 (11) Å

  • b = 15.9118 (13) Å

  • c = 13.0221 (8) Å

  • β = 103.207 (3)°

  • V = 2533.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.45 × 0.35 × 0.22 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.955, T max = 0.978

  • 18116 measured reflections

  • 5466 independent reflections

  • 3571 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.163

  • S = 1.05

  • 5466 reflections

  • 361 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812051574/cv5368sup1.cif

e-69-0o179-sup1.cif (33.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051574/cv5368Isup2.hkl

e-69-0o179-Isup2.hkl (267.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051574/cv5368Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 (2) 2.26 (2) 3.119 (2) 175.2 (19)
N2—H2N⋯F1ii 0.92 (2) 2.46 (2) 3.332 (2) 158.4 (17)
C22—H22⋯F4iii 0.93 2.52 3.345 (3) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the Department of Chemistry, IIT-Madras, for the X-ray data collection.

supplementary crystallographic information

Comment

The Lupin alkaloids contain the 3,7-diazabicyclo[3.3.1]nonan-9-one nucleus, displaying various biological actions (Parthiban et al., 2009, 2010; Asakawa, 1995; Jeyaraman & Avila, 1981). Since the biological actions mainly depend on the stereochemistry of the molecules, we examined the title compound, (I), to explore its stereochemistry in the solid-state.

In (I) (Fig. 1), the piperidone ring N1—C1—C2—C7—C5—C6 adopts a chair conformation, according to Cremer & Pople (1975). The total puckering amplitude QT is 0.623 (2) Å, and the phase angle θ is 2.7 (3)°. The piperidone ring N2—C3—C2—C7—C5—C4 adopts a boat conformation with QT = 0.799 (2) and θ = 90.38 (14)°. The 2-fluorophenyl groups attached to the 'chair' piperidone ring are in equatoril position with the torsion angles C7—C2—C1—C8 = 179.04 (19)° and C26—C6—C5—C7 = 176.67 (19)°. The 2-fluorophenyl groups attached to the 'boat' piperidone ring have the following torsion angles - C7—C2—C3—C14 = 116.8 (2)° and C20—C4—C5—C7 = -122.5 (2)°. The benzene rings of the 2-fluorophenyl group on the chair form piperidone are inclined to each other at an angle of 19.44 (3)°, whereas, the same attached on the boat form are inclined to each other at an angle of 74.55 (5)°. In one of the 2-fluorophenyl groups, the F atom is disordered in two positions in a ratio 0.838 (4):0.162 (4). On the basis of the above analysis, it is concluded that the title compound exists in the chair-boat conformation with an equatorial orientation of the 2-fluorophenyl groups on both sides of the secondary amino group of the piperidone in the chair conformation.

In the crystal, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains in [001], and these chains held together via weak N—H···F and C—H···F interactions (Table 1).

Experimental

The 2,4,6,8-tetrakis(2-fluorophenyl)-3,7-diazabicyclo[3.3.1] nonan-9-one was synthesized by successive Mannich condensations in one-pot, using 2-fluorobenzaldehyde (0.2 mol, 21 ml), acetone (0.05 mol, 3.7 ml) and ammonium acetate (0.1 mol, 7.7 g) in a 50 ml of absolute ethanol (Parthiban et al., 2008). The mixture was gently warmed on a hot plate at 303 K (30° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude 3,7-diazabicycle was separated by filtration and gently washed with 1:5 cold ethanol-ether mixture. The X-ray diffraction quality crystals of pure 2,4,6,8- tetrakis(2-fluorophenyl)-3,7-diazabicyclo[3.3.1]nonan-9-one was obtained by slow evaporation from ethanol.

Refinement

N-bound H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and for methyl H atoms at Uiso(H) = 1.5Ueq(C). In one of the 4-fluorophenyl group the F atom is disordered over two positions in a ratio 0.838 (4):0.162 (4).

Figures

Fig. 1.

Fig. 1.

View of (I) showing the atomic numbering and 30% probability displacement ellipsoids. For the disordered atoms, only major part is shown.

Crystal data

C31H24F4N2O F(000) = 1072
Mr = 516.52 Dx = 1.354 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5770 reflections
a = 12.5610 (11) Å θ = 2.9–25.5°
b = 15.9118 (13) Å µ = 0.10 mm1
c = 13.0221 (8) Å T = 298 K
β = 103.207 (3)° Rectangular, colourless
V = 2533.9 (3) Å3 0.45 × 0.35 × 0.22 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 5466 independent reflections
Radiation source: fine-focus sealed tube 3571 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
phi and ω scans θmax = 28.6°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −12→16
Tmin = 0.955, Tmax = 0.978 k = −21→20
18116 measured reflections l = −17→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0766P)2 + 0.6943P] where P = (Fo2 + 2Fc2)/3
5466 reflections (Δ/σ)max < 0.001
361 parameters Δρmax = 0.48 e Å3
2 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.09684 (16) 0.22644 (12) 0.67314 (15) 0.0421 (5)
H1 0.1138 0.2839 0.6990 0.051*
C2 0.08454 (15) 0.16959 (12) 0.76747 (14) 0.0396 (4)
H2 0.0282 0.1930 0.8003 0.048*
C3 0.05623 (15) 0.07695 (11) 0.73535 (14) 0.0374 (4)
H3 0.0472 0.0708 0.6590 0.045*
C4 0.25113 (15) 0.04433 (11) 0.76060 (13) 0.0349 (4)
H4 0.2405 0.0412 0.6838 0.042*
C5 0.28201 (15) 0.13566 (11) 0.79861 (13) 0.0352 (4)
H5 0.3511 0.1355 0.8519 0.042*
C6 0.29129 (15) 0.19517 (11) 0.70649 (14) 0.0374 (4)
H6 0.3062 0.2522 0.7344 0.045*
C7 0.19273 (16) 0.17098 (11) 0.84505 (14) 0.0399 (4)
C8 −0.00906 (17) 0.22752 (13) 0.58965 (17) 0.0486 (5)
C9 −0.02763 (19) 0.18027 (17) 0.49859 (18) 0.0627 (6)
H9 0.0292 0.1488 0.4834 0.075*
C10 −0.1295 (2) 0.1787 (2) 0.4290 (2) 0.0863 (9)
H10 −0.1399 0.1463 0.3681 0.104*
C11 −0.2141 (3) 0.2240 (3) 0.4492 (3) 0.0970 (11)
H11 −0.2824 0.2219 0.4028 0.116*
C12 −0.1985 (2) 0.2725 (2) 0.5373 (3) 0.0974 (11)
H12 −0.2554 0.3045 0.5516 0.117*
C13 −0.0969 (2) 0.27338 (16) 0.6050 (2) 0.0709 (7)
C14 −0.04489 (16) 0.04573 (13) 0.76692 (16) 0.0445 (5)
C15 −0.0597 (2) 0.0564 (2) 0.86796 (19) 0.0782 (8)
H15 −0.0088 0.0877 0.9160 0.094*
C16 −0.1475 (3) 0.0222 (3) 0.8997 (3) 0.1031 (12)
H16 −0.1546 0.0297 0.9687 0.124*
C17 −0.2242 (2) −0.0226 (2) 0.8300 (3) 0.0946 (10)
H17 −0.2842 −0.0449 0.8511 0.113*
C18 −0.2129 (2) −0.0345 (2) 0.7304 (3) 0.0840 (9)
H18 −0.2647 −0.0652 0.6825 0.101*
C19 −0.1239 (2) −0.00066 (16) 0.70106 (19) 0.0620 (6)
C20 0.33704 (15) −0.01785 (11) 0.81200 (15) 0.0390 (4)
C22 0.4343 (2) −0.09151 (15) 0.9675 (2) 0.0670 (7)
H22 0.4433 −0.1027 1.0391 0.080*
C23 0.4977 (2) −0.13167 (15) 0.9108 (3) 0.0787 (9)
H23 0.5507 −0.1698 0.9436 0.094*
C24 0.4831 (2) −0.11565 (16) 0.8054 (3) 0.0785 (8)
H24 0.5269 −0.1419 0.7662 0.094*
C26 0.38407 (15) 0.16825 (11) 0.65687 (14) 0.0396 (4)
C27 0.49103 (17) 0.17460 (13) 0.71274 (16) 0.0470 (5)
C28 0.57966 (19) 0.15100 (16) 0.6745 (2) 0.0643 (6)
H28 0.6503 0.1554 0.7159 0.077*
C29 0.5608 (2) 0.12072 (17) 0.5734 (2) 0.0706 (7)
H29 0.6194 0.1053 0.5449 0.085*
C30 0.4567 (2) 0.11314 (17) 0.5146 (2) 0.0656 (6)
H30 0.4446 0.0920 0.4464 0.079*
C31 0.36851 (18) 0.13667 (13) 0.55559 (16) 0.0501 (5)
H31 0.2979 0.1311 0.5144 0.060*
F1 −0.08125 (15) 0.32238 (11) 0.69330 (16) 0.1080 (6)
F2 −0.11291 (17) −0.01465 (15) 0.60175 (14) 0.1208 (8)
F4 0.50996 (10) 0.20708 (9) 0.81229 (10) 0.0628 (4)
N1 0.18692 (13) 0.19524 (10) 0.63013 (13) 0.0407 (4)
H1N 0.1914 (17) 0.2264 (13) 0.5771 (17) 0.047 (6)*
N2 0.14804 (12) 0.02386 (10) 0.79069 (12) 0.0384 (4)
H2N 0.1312 (17) −0.0318 (15) 0.7762 (15) 0.050 (6)*
O1 0.20898 (13) 0.20153 (11) 0.93241 (11) 0.0625 (4)
C21 0.35739 (17) −0.03465 (13) 0.91879 (17) 0.0520 (5)
H21 0.3171 −0.0061 0.9594 0.062* 0.838 (4)
F3A 0.3015 (5) 0.0083 (4) 0.9768 (5) 0.082 (4) 0.162 (4)
C25 0.40231 (19) −0.06003 (13) 0.75767 (19) 0.0565 (6)
H21A 0.3917 −0.0507 0.6855 0.068* 0.162 (4)
F3 0.38896 (17) −0.04757 (12) 0.65546 (14) 0.0842 (8) 0.838 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0463 (12) 0.0347 (10) 0.0476 (11) 0.0057 (8) 0.0154 (9) 0.0037 (8)
C2 0.0432 (11) 0.0402 (10) 0.0402 (9) 0.0048 (8) 0.0195 (8) −0.0030 (8)
C3 0.0368 (10) 0.0416 (10) 0.0351 (9) 0.0020 (8) 0.0110 (8) −0.0013 (7)
C4 0.0377 (10) 0.0348 (9) 0.0342 (9) −0.0026 (7) 0.0123 (8) −0.0016 (7)
C5 0.0386 (11) 0.0348 (9) 0.0324 (8) −0.0029 (7) 0.0084 (8) 0.0012 (7)
C6 0.0406 (11) 0.0327 (9) 0.0404 (9) −0.0012 (8) 0.0126 (8) 0.0032 (8)
C7 0.0518 (12) 0.0342 (9) 0.0371 (9) −0.0029 (8) 0.0169 (9) −0.0018 (8)
C8 0.0435 (12) 0.0481 (11) 0.0574 (12) 0.0114 (9) 0.0178 (10) 0.0172 (10)
C9 0.0527 (14) 0.0828 (17) 0.0510 (12) 0.0133 (12) 0.0084 (11) 0.0049 (12)
C10 0.0658 (19) 0.121 (3) 0.0641 (16) 0.0033 (18) −0.0028 (14) 0.0096 (16)
C11 0.0544 (19) 0.126 (3) 0.101 (2) 0.0119 (18) −0.0019 (17) 0.035 (2)
C12 0.0531 (18) 0.102 (2) 0.137 (3) 0.0391 (16) 0.0203 (19) 0.038 (2)
C13 0.0689 (18) 0.0603 (15) 0.0879 (18) 0.0262 (13) 0.0271 (15) 0.0130 (14)
C14 0.0338 (11) 0.0501 (11) 0.0490 (11) 0.0006 (9) 0.0086 (9) 0.0004 (9)
C15 0.0657 (17) 0.117 (2) 0.0589 (14) −0.0358 (16) 0.0284 (13) −0.0164 (15)
C16 0.085 (2) 0.154 (3) 0.087 (2) −0.048 (2) 0.0537 (18) −0.024 (2)
C17 0.0587 (18) 0.118 (3) 0.118 (3) −0.0284 (17) 0.0429 (18) −0.008 (2)
C18 0.0473 (16) 0.099 (2) 0.103 (2) −0.0296 (14) 0.0103 (15) −0.0190 (17)
C19 0.0531 (15) 0.0736 (16) 0.0579 (14) −0.0078 (12) 0.0097 (11) −0.0140 (12)
C20 0.0347 (10) 0.0317 (9) 0.0517 (11) −0.0046 (7) 0.0121 (9) −0.0001 (8)
C22 0.0588 (16) 0.0522 (14) 0.0775 (16) −0.0064 (12) −0.0104 (13) 0.0168 (12)
C23 0.0567 (17) 0.0413 (13) 0.123 (3) 0.0055 (11) −0.0104 (16) 0.0058 (15)
C24 0.0616 (17) 0.0480 (14) 0.130 (3) 0.0146 (12) 0.0307 (17) −0.0136 (16)
C26 0.0418 (11) 0.0355 (10) 0.0441 (10) −0.0014 (8) 0.0149 (9) 0.0092 (8)
C27 0.0459 (13) 0.0471 (11) 0.0482 (11) −0.0043 (9) 0.0109 (9) 0.0076 (9)
C28 0.0394 (13) 0.0721 (16) 0.0820 (17) 0.0034 (11) 0.0151 (12) 0.0116 (13)
C29 0.0545 (16) 0.0823 (18) 0.0846 (18) 0.0079 (13) 0.0359 (14) −0.0012 (15)
C30 0.0631 (17) 0.0791 (17) 0.0621 (14) 0.0056 (13) 0.0299 (12) −0.0059 (12)
C31 0.0462 (12) 0.0595 (13) 0.0476 (11) 0.0002 (10) 0.0167 (9) 0.0028 (10)
F1 0.1086 (14) 0.0917 (12) 0.1292 (15) 0.0536 (11) 0.0388 (11) −0.0123 (11)
F2 0.1206 (16) 0.1637 (19) 0.0805 (11) −0.0621 (14) 0.0277 (11) −0.0527 (12)
F4 0.0538 (8) 0.0760 (9) 0.0545 (8) −0.0110 (6) 0.0040 (6) 0.0014 (6)
N1 0.0402 (10) 0.0455 (9) 0.0387 (8) 0.0055 (7) 0.0140 (7) 0.0106 (7)
N2 0.0350 (9) 0.0349 (9) 0.0468 (9) −0.0021 (7) 0.0123 (7) 0.0028 (7)
O1 0.0697 (11) 0.0749 (11) 0.0451 (8) −0.0027 (8) 0.0179 (7) −0.0241 (7)
C21 0.0460 (13) 0.0501 (12) 0.0568 (13) −0.0031 (10) 0.0054 (10) 0.0101 (10)
F3A 0.092 (8) 0.107 (8) 0.047 (5) 0.011 (6) 0.015 (5) 0.019 (5)
C25 0.0596 (14) 0.0415 (11) 0.0733 (15) 0.0040 (10) 0.0254 (12) −0.0051 (10)
F3 0.1167 (17) 0.0793 (13) 0.0713 (12) 0.0305 (11) 0.0522 (11) −0.0031 (9)

Geometric parameters (Å, º)

C1—N1 1.459 (2) C15—H15 0.9300
C1—C8 1.514 (3) C16—C17 1.364 (4)
C1—C2 1.561 (3) C16—H16 0.9300
C1—H1 0.9800 C17—C18 1.350 (4)
C2—C7 1.497 (3) C17—H17 0.9300
C2—C3 1.551 (3) C18—C19 1.373 (4)
C2—H2 0.9800 C18—H18 0.9300
C3—N2 1.478 (2) C19—F2 1.350 (3)
C3—C14 1.506 (3) C20—C25 1.374 (3)
C3—H3 0.9800 C20—C21 1.381 (3)
C4—N2 1.473 (2) C22—C23 1.363 (4)
C4—C20 1.504 (3) C22—C21 1.369 (3)
C4—C5 1.555 (2) C22—H22 0.9300
C4—H4 0.9800 C23—C24 1.366 (4)
C5—C7 1.500 (3) C23—H23 0.9300
C5—C6 1.553 (2) C24—C25 1.382 (3)
C5—H5 0.9800 C24—H24 0.9300
C6—N1 1.453 (2) C26—C27 1.378 (3)
C6—C26 1.518 (3) C26—C31 1.383 (3)
C6—H6 0.9800 C27—F4 1.365 (2)
C7—O1 1.211 (2) C27—C28 1.371 (3)
C8—C13 1.375 (3) C28—C29 1.371 (4)
C8—C9 1.378 (3) C28—H28 0.9300
C9—C10 1.389 (3) C29—C30 1.362 (3)
C9—H9 0.9300 C29—H29 0.9300
C10—C11 1.358 (4) C30—C31 1.386 (3)
C10—H10 0.9300 C30—H30 0.9300
C11—C12 1.360 (5) C31—H31 0.9300
C11—H11 0.9300 N1—H1N 0.86 (2)
C12—C13 1.376 (4) N2—H2N 0.92 (2)
C12—H12 0.9300 C21—F3A 1.331 (2)
C13—F1 1.366 (3) C21—H21 0.9300
C14—C19 1.370 (3) C25—F3 1.318 (3)
C14—C15 1.381 (3) C25—H21A 0.9300
C15—C16 1.376 (3)
N1—C1—C8 111.06 (16) C14—C15—H15 119.0
N1—C1—C2 109.24 (15) C17—C16—C15 120.0 (3)
C8—C1—C2 110.06 (16) C17—C16—H16 120.0
N1—C1—H1 108.8 C15—C16—H16 120.0
C8—C1—H1 108.8 C18—C17—C16 120.0 (3)
C2—C1—H1 108.8 C18—C17—H17 120.0
C7—C2—C3 108.22 (15) C16—C17—H17 120.0
C7—C2—C1 106.54 (15) C17—C18—C19 118.9 (3)
C3—C2—C1 113.34 (14) C17—C18—H18 120.5
C7—C2—H2 109.5 C19—C18—H18 120.5
C3—C2—H2 109.5 F2—C19—C14 118.1 (2)
C1—C2—H2 109.5 F2—C19—C18 118.0 (2)
N2—C3—C14 106.93 (15) C14—C19—C18 123.9 (2)
N2—C3—C2 107.85 (15) C25—C20—C21 115.4 (2)
C14—C3—C2 113.30 (15) C25—C20—C4 122.96 (18)
N2—C3—H3 109.6 C21—C20—C4 121.63 (17)
C14—C3—H3 109.6 C23—C22—C21 119.8 (3)
C2—C3—H3 109.6 C23—C22—H22 120.1
N2—C4—C20 108.73 (14) C21—C22—H22 120.1
N2—C4—C5 107.01 (14) C22—C23—C24 119.7 (2)
C20—C4—C5 111.82 (15) C22—C23—H23 120.1
N2—C4—H4 109.7 C24—C23—H23 120.1
C20—C4—H4 109.7 C23—C24—C25 119.2 (2)
C5—C4—H4 109.7 C23—C24—H24 120.4
C7—C5—C6 106.14 (14) C25—C24—H24 120.4
C7—C5—C4 108.87 (14) C27—C26—C31 116.01 (18)
C6—C5—C4 112.39 (14) C27—C26—C6 120.37 (17)
C7—C5—H5 109.8 C31—C26—C6 123.62 (17)
C6—C5—H5 109.8 F4—C27—C28 117.94 (19)
C4—C5—H5 109.8 F4—C27—C26 117.80 (17)
N1—C6—C26 111.68 (15) C28—C27—C26 124.3 (2)
N1—C6—C5 108.28 (15) C29—C28—C27 117.9 (2)
C26—C6—C5 110.93 (15) C29—C28—H28 121.0
N1—C6—H6 108.6 C27—C28—H28 121.0
C26—C6—H6 108.6 C30—C29—C28 120.3 (2)
C5—C6—H6 108.6 C30—C29—H29 119.9
O1—C7—C2 124.89 (17) C28—C29—H29 119.9
O1—C7—C5 123.25 (18) C29—C30—C31 120.6 (2)
C2—C7—C5 111.70 (15) C29—C30—H30 119.7
C13—C8—C9 115.5 (2) C31—C30—H30 119.7
C13—C8—C1 120.3 (2) C26—C31—C30 120.9 (2)
C9—C8—C1 124.06 (18) C26—C31—H31 119.5
C8—C9—C10 121.4 (2) C30—C31—H31 119.5
C8—C9—H9 119.3 C6—N1—C1 113.27 (15)
C10—C9—H9 119.3 C6—N1—H1N 109.6 (14)
C11—C10—C9 120.6 (3) C1—N1—H1N 108.1 (14)
C11—C10—H10 119.7 C4—N2—C3 112.30 (14)
C9—C10—H10 119.7 C4—N2—H2N 109.5 (13)
C10—C11—C12 119.7 (3) C3—N2—H2N 109.4 (13)
C10—C11—H11 120.1 F3A—C21—C22 119.0 (4)
C12—C11—H11 120.1 F3A—C21—C20 118.1 (4)
C11—C12—C13 118.7 (3) C22—C21—C20 122.9 (2)
C11—C12—H12 120.6 F3A—C21—H21 1.7
C13—C12—H12 120.6 C22—C21—H21 118.6
F1—C13—C8 117.4 (2) C20—C21—H21 118.6
F1—C13—C12 118.6 (3) F3—C25—C20 119.6 (2)
C8—C13—C12 124.0 (3) F3—C25—C24 117.5 (2)
C19—C14—C15 115.3 (2) C20—C25—C24 123.0 (2)
C19—C14—C3 122.84 (18) F3—C25—H21A 1.1
C15—C14—C3 121.68 (18) C20—C25—H21A 118.5
C16—C15—C14 122.0 (2) C24—C25—H21A 118.5
C16—C15—H15 119.0
N1—C1—C2—C7 56.93 (19) C15—C14—C19—F2 −178.8 (3)
C8—C1—C2—C7 179.12 (15) C3—C14—C19—F2 −3.8 (3)
N1—C1—C2—C3 −62.0 (2) C15—C14—C19—C18 0.5 (4)
C8—C1—C2—C3 60.2 (2) C3—C14—C19—C18 175.5 (2)
C7—C2—C3—N2 −1.65 (18) C17—C18—C19—F2 178.7 (3)
C1—C2—C3—N2 116.29 (16) C17—C18—C19—C14 −0.5 (5)
C7—C2—C3—C14 116.50 (16) N2—C4—C20—C25 130.75 (19)
C1—C2—C3—C14 −125.56 (17) C5—C4—C20—C25 −111.3 (2)
N2—C4—C5—C7 −3.65 (19) N2—C4—C20—C21 −51.0 (2)
C20—C4—C5—C7 −122.62 (16) C5—C4—C20—C21 66.9 (2)
N2—C4—C5—C6 −120.95 (15) C21—C22—C23—C24 −0.8 (4)
C20—C4—C5—C6 120.09 (16) C22—C23—C24—C25 −1.3 (4)
C7—C5—C6—N1 −60.26 (18) N1—C6—C26—C27 171.53 (17)
C4—C5—C6—N1 58.65 (19) C5—C6—C26—C27 −67.6 (2)
C7—C5—C6—C26 176.86 (15) N1—C6—C26—C31 −8.4 (2)
C4—C5—C6—C26 −64.2 (2) C5—C6—C26—C31 112.5 (2)
C3—C2—C7—O1 −123.9 (2) C31—C26—C27—F4 178.71 (17)
C1—C2—C7—O1 113.9 (2) C6—C26—C27—F4 −1.2 (3)
C3—C2—C7—C5 60.54 (18) C31—C26—C27—C28 −0.8 (3)
C1—C2—C7—C5 −61.65 (18) C6—C26—C27—C28 179.30 (19)
C6—C5—C7—O1 −112.1 (2) F4—C27—C28—C29 −178.1 (2)
C4—C5—C7—O1 126.71 (19) C26—C27—C28—C29 1.4 (4)
C6—C5—C7—C2 63.50 (18) C27—C28—C29—C30 −1.3 (4)
C4—C5—C7—C2 −57.69 (18) C28—C29—C30—C31 0.7 (4)
N1—C1—C8—C13 −163.67 (19) C27—C26—C31—C30 0.1 (3)
C2—C1—C8—C13 75.2 (2) C6—C26—C31—C30 180.0 (2)
N1—C1—C8—C9 20.7 (3) C29—C30—C31—C26 0.0 (4)
C2—C1—C8—C9 −100.4 (2) C26—C6—N1—C1 −175.95 (15)
C13—C8—C9—C10 −1.2 (4) C5—C6—N1—C1 61.62 (19)
C1—C8—C9—C10 174.7 (2) C8—C1—N1—C6 178.37 (15)
C8—C9—C10—C11 −0.1 (4) C2—C1—N1—C6 −60.0 (2)
C9—C10—C11—C12 1.1 (5) C20—C4—N2—C3 −174.49 (14)
C10—C11—C12—C13 −0.9 (5) C5—C4—N2—C3 64.57 (18)
C9—C8—C13—F1 −178.7 (2) C14—C3—N2—C4 176.03 (14)
C1—C8—C13—F1 5.3 (3) C2—C3—N2—C4 −61.80 (18)
C9—C8—C13—C12 1.4 (4) C23—C22—C21—F3A −175.4 (4)
C1—C8—C13—C12 −174.6 (2) C23—C22—C21—C20 2.7 (3)
C11—C12—C13—F1 179.7 (3) C25—C20—C21—F3A 175.8 (3)
C11—C12—C13—C8 −0.4 (5) C4—C20—C21—F3A −2.5 (3)
N2—C3—C14—C19 −105.3 (2) C25—C20—C21—C22 −2.3 (3)
C2—C3—C14—C19 136.0 (2) C4—C20—C21—C22 179.37 (18)
N2—C3—C14—C15 69.4 (3) C21—C20—C25—F3 −179.71 (19)
C2—C3—C14—C15 −49.3 (3) C4—C20—C25—F3 −1.4 (3)
C19—C14—C15—C16 0.4 (4) C21—C20—C25—C24 0.0 (3)
C3—C14—C15—C16 −174.7 (3) C4—C20—C25—C24 178.4 (2)
C14—C15—C16—C17 −1.2 (6) C23—C24—C25—F3 −178.5 (2)
C15—C16—C17—C18 1.1 (6) C23—C24—C25—C20 1.7 (4)
C16—C17—C18—C19 −0.3 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.86 (2) 2.26 (2) 3.119 (2) 175.2 (19)
N2—H2N···F1ii 0.92 (2) 2.46 (2) 3.332 (2) 158.4 (17)
C22—H22···F4iii 0.93 2.52 3.345 (3) 148

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, y−1/2, −z+3/2; (iii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5368).

References

  1. Asakawa, Y. (1995). In Progress in the Chemistry of Organic Natural Products, edited by G. W. Moore, R. E. Steglich & W. Tamm. New York: Springer-Verlag.
  2. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.
  6. Park, D. H., Ramkumar, V. & Parthiban, P. (2012). Acta Cryst. E68, o1481. [DOI] [PMC free article] [PubMed]
  7. Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981–6985. [DOI] [PubMed]
  8. Parthiban, P., Kabilan, S., Ramkumar, V. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett 20, 6452–6458. [DOI] [PubMed]
  9. Parthiban, P., Ramachandran, R., Aridoss, G. & Kabilan, S. (2008). Magn. Reson. Chem 46, 780–785. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812051574/cv5368sup1.cif

e-69-0o179-sup1.cif (33.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051574/cv5368Isup2.hkl

e-69-0o179-Isup2.hkl (267.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051574/cv5368Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES