Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 4;69(Pt 2):o181. doi: 10.1107/S1600536812051732

3-(2-Methyl­phen­yl)-3a,4-dihydro-3H-chromeno[4,3-c]isoxazole-3a-carbo­nitrile

G Suresh a, J Srinivasan b, M Bakthadoss b, S Aravindhan a,*
PMCID: PMC3569243  PMID: 23424466

Abstract

In the title compound, C18H14N2O2, the pyran ring of the chromeno ring system has a half-chair conformation, and the dihedral angle between its mean plane and the benzene ring is 5.3 (2)°. The isoxazole ring forms a dihedral angle of 74.6 (2)° with the attached benzene ring and is inclined to the mean plane of the chromeno ring system by 15.06 (19)°. In the crystal, there are no significant inter­molecular inter­actions.

Related literature  

For the biological importance of 4H-chromene derivatives, see: Cai (2007, 2008); Cai et al. (2006); Gabor (1988); Brooks (1998); Valenti et al. (1993); Hyana & Saimoto (1987); Tang et al. (2007). For related structures, see: Gangadharan et al. (2011); Swaminathan et al. (2011).graphic file with name e-69-0o181-scheme1.jpg

Experimental  

Crystal data  

  • C18H14N2O2

  • M r = 290.31

  • Orthorhombic, Inline graphic

  • a = 19.326 (3) Å

  • b = 10.7866 (17) Å

  • c = 6.9072 (11) Å

  • V = 1439.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.35 × 0.25 × 0.15 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.970, T max = 0.987

  • 4742 measured reflections

  • 1750 independent reflections

  • 1100 reflections with I > 2σ(I)

  • R int = 0.047

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.146

  • S = 1.09

  • 1750 reflections

  • 200 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051732/su2544sup1.cif

e-69-0o181-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051732/su2544Isup2.hkl

e-69-0o181-Isup2.hkl (84.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051732/su2544Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

GS and SA thank the UGC, India, for financial support. GS thanks the SAIF, IIT-Madras, for the instrumentation facility.

supplementary crystallographic information

Comment

4H-Chromenes are biologically important compounds used as synthetic ligands for drug designing and discovery process. They exhibit numerous biological and pharmacological properties such as anti-viral, anti-fungal, anti-inflammatory, anti- diabetic, cardionthonic, anti anaphylactic and anti-cancer activity (Cai, 2008; Cai, 2007; Cai et al., 2006; Gabor, 1988; Brooks, 1998; Valenti et al., 1993; Hyana & Saimoto, 1987; Tang et al., 2007). We report herein on the synthesis of a new chromeno compound and its crystal structure.

The molecular structure of the title molecule is illustrated in Fig. 1. In the chromeno ring system, the dihedral angle between the mean plane of the pyran ring, which has a half-chair conformation, and the benzene ring is 5.3 (2)°. The dihedral angle between the mean plane of the chromeno ring system and isoxazole ring is 15.06 (19)°. The isoxazole ring also forms a dihedral angle of 74.6 (2)° with the the benzene ring (C11—C16). The geometric parameters of the title molecule agree well with those reported for closely related structures (Gangadharan et al., 2011; Swaminathan et al., 2011).

In the crystal, there are no significant intermolecular interactions.

Experimental

NCS (4 mmol) was added pinch wise over 3h to a solution of (E)-2-((2-((E)-(hydroxyimino)methyl)phenoxy)methyl)-3-o-tolylacrylonitrile(2 mmol) in CCl4 at 273 - 283 K. After Et3N (4 mmol) was added to the reaction mixture which was stirred at room temperature for 2 h. After completion of the reaction, the mixture was evaporated under reduced pressure and the resulting crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 × 15 ml). The combined organic layers washed with brine (2 × 10 ml) and dried over anhydrous Na2SO4. The organic layer was evaporated and purified by column chromatography (silica gel 60–120 mesh; 7% EtOAc in hexanes) to provide the desired title product as a colourless solid. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement

All the hydrogen atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl group and = 1.2Ueq(C) for other groups. In the final cycles of refinement, in the absence of significant anomalous scattering effects, Friedel pairs were merged and Δf " set to zero.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atom labeling. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C18H14N2O2 F(000) = 608
Mr = 290.31 Dx = 1.339 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 1750 reflections
a = 19.326 (3) Å θ = 1.9–27.7°
b = 10.7866 (17) Å µ = 0.09 mm1
c = 6.9072 (11) Å T = 298 K
V = 1439.9 (4) Å3 Orthorhombic, colourless
Z = 4 0.35 × 0.25 × 0.15 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 1750 independent reflections
Radiation source: fine-focus sealed tube 1100 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.047
ω and φ scans θmax = 27.7°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −24→25
Tmin = 0.970, Tmax = 0.987 k = −10→13
4742 measured reflections l = −8→6

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.5663P] where P = (Fo2 + 2Fc2)/3
1750 reflections (Δ/σ)max < 0.001
200 parameters Δρmax = 0.21 e Å3
1 restraint Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8559 (2) −0.2941 (4) 0.6812 (9) 0.0493 (12)
C2 0.8529 (2) −0.4218 (5) 0.6834 (12) 0.0659 (16)
H2 0.8639 −0.4667 0.5727 0.079*
C3 0.8336 (3) −0.4824 (5) 0.8491 (13) 0.0725 (18)
H3 0.8311 −0.5685 0.8502 0.087*
C4 0.8177 (2) −0.4155 (6) 1.0168 (11) 0.0717 (18)
H4 0.8053 −0.4572 1.1294 0.086*
C5 0.8204 (2) −0.2907 (5) 1.0155 (9) 0.0597 (14)
H5 0.8093 −0.2470 1.1274 0.072*
C6 0.8397 (2) −0.2254 (5) 0.8478 (8) 0.0494 (13)
C7 0.84595 (19) −0.0931 (5) 0.8391 (7) 0.0421 (12)
C8 0.8522 (2) 0.0964 (4) 0.6809 (8) 0.0457 (11)
H8 0.8093 0.1013 0.6058 0.055*
C9 0.88122 (19) −0.0358 (4) 0.6634 (7) 0.0384 (10)
C10 0.8602 (2) −0.1104 (5) 0.4876 (8) 0.0482 (12)
H10A 0.8109 −0.1007 0.4659 0.058*
H10B 0.8842 −0.0789 0.3746 0.058*
C11 0.8981 (2) 0.2017 (4) 0.6220 (7) 0.0434 (12)
C12 0.9523 (2) 0.2369 (4) 0.7453 (9) 0.0558 (14)
H12 0.9572 0.1988 0.8653 0.067*
C13 0.9984 (2) 0.3274 (5) 0.6900 (11) 0.0674 (17)
H13 1.0337 0.3520 0.7733 0.081*
C14 0.9919 (3) 0.3817 (5) 0.5095 (13) 0.0744 (19)
H14 1.0239 0.4406 0.4686 0.089*
C15 0.9383 (3) 0.3483 (5) 0.3917 (9) 0.0618 (14)
H15 0.9341 0.3865 0.2716 0.074*
C16 0.8901 (2) 0.2600 (4) 0.4442 (8) 0.0474 (12)
C17 0.8323 (3) 0.2283 (5) 0.3092 (9) 0.0668 (15)
H17A 0.7888 0.2425 0.3726 0.100*
H17B 0.8357 0.1426 0.2726 0.100*
H17C 0.8353 0.2793 0.1957 0.100*
C18 0.9575 (2) −0.0430 (4) 0.6899 (7) 0.0412 (10)
N1 0.82063 (19) −0.0141 (4) 0.9557 (7) 0.0556 (11)
N2 1.01564 (18) −0.0484 (4) 0.7066 (7) 0.0570 (11)
O1 0.87563 (16) −0.2367 (3) 0.5112 (6) 0.0556 (9)
O2 0.83494 (17) 0.1062 (3) 0.8863 (5) 0.0582 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.038 (2) 0.057 (3) 0.054 (3) −0.001 (2) 0.006 (2) −0.002 (3)
C2 0.054 (3) 0.056 (4) 0.088 (5) 0.003 (2) 0.001 (3) −0.021 (4)
C3 0.059 (3) 0.048 (3) 0.110 (6) −0.003 (2) −0.006 (3) 0.005 (4)
C4 0.051 (3) 0.083 (4) 0.081 (5) 0.001 (3) 0.006 (3) 0.025 (5)
C5 0.050 (3) 0.075 (4) 0.055 (4) 0.008 (3) 0.008 (3) 0.005 (3)
C6 0.034 (2) 0.069 (3) 0.046 (3) 0.002 (2) 0.003 (2) −0.002 (3)
C7 0.035 (2) 0.058 (3) 0.033 (3) 0.004 (2) 0.0013 (19) −0.009 (3)
C8 0.043 (2) 0.056 (3) 0.038 (3) 0.003 (2) −0.004 (2) −0.005 (3)
C9 0.042 (2) 0.045 (2) 0.029 (2) 0.0030 (18) 0.0034 (19) −0.007 (2)
C10 0.047 (2) 0.062 (3) 0.036 (3) 0.001 (2) 0.004 (2) −0.009 (3)
C11 0.041 (2) 0.042 (3) 0.047 (3) 0.0072 (19) 0.001 (2) −0.015 (2)
C12 0.054 (3) 0.055 (3) 0.057 (4) 0.010 (2) −0.014 (2) −0.004 (3)
C13 0.050 (3) 0.056 (3) 0.097 (5) −0.001 (2) −0.019 (3) −0.012 (4)
C14 0.055 (3) 0.062 (4) 0.106 (6) −0.001 (2) 0.003 (3) −0.001 (4)
C15 0.065 (3) 0.064 (3) 0.057 (4) 0.008 (3) 0.005 (3) −0.003 (3)
C16 0.051 (2) 0.044 (3) 0.047 (3) 0.009 (2) 0.001 (2) −0.010 (3)
C17 0.087 (4) 0.068 (4) 0.045 (4) −0.005 (3) −0.015 (3) 0.005 (3)
C18 0.044 (2) 0.049 (3) 0.030 (2) 0.0022 (19) 0.007 (2) −0.004 (2)
N1 0.052 (2) 0.071 (3) 0.043 (3) 0.003 (2) 0.0102 (18) −0.008 (2)
N2 0.041 (2) 0.072 (3) 0.057 (3) 0.0055 (18) 0.001 (2) −0.007 (3)
O1 0.068 (2) 0.053 (2) 0.045 (2) 0.0031 (17) 0.0091 (18) −0.0161 (19)
O2 0.070 (2) 0.062 (2) 0.042 (2) 0.0082 (16) 0.0097 (17) −0.012 (2)

Geometric parameters (Å, º)

C1—C2 1.379 (7) C10—O1 1.405 (6)
C1—O1 1.381 (7) C10—H10A 0.9700
C1—C6 1.404 (7) C10—H10B 0.9700
C2—C3 1.370 (10) C11—C16 1.388 (7)
C2—H2 0.9300 C11—C12 1.403 (6)
C3—C4 1.399 (9) C12—C13 1.376 (7)
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.347 (8) C13—C14 1.383 (10)
C4—H4 0.9300 C13—H13 0.9300
C5—C6 1.406 (7) C14—C15 1.365 (8)
C5—H5 0.9300 C14—H14 0.9300
C6—C7 1.433 (7) C15—C16 1.381 (7)
C7—N1 1.271 (6) C15—H15 0.9300
C7—C9 1.523 (6) C16—C17 1.495 (7)
C8—O2 1.461 (6) C17—H17A 0.9600
C8—C11 1.497 (6) C17—H17B 0.9600
C8—C9 1.537 (6) C17—H17C 0.9600
C8—H8 0.9800 C18—N2 1.131 (5)
C9—C18 1.487 (5) N1—O2 1.410 (5)
C9—C10 1.512 (7)
C2—C1—O1 118.0 (5) O1—C10—H10A 109.3
C2—C1—C6 120.6 (6) C9—C10—H10A 109.3
O1—C1—C6 121.5 (4) O1—C10—H10B 109.3
C3—C2—C1 119.8 (6) C9—C10—H10B 109.3
C3—C2—H2 120.1 H10A—C10—H10B 108.0
C1—C2—H2 120.1 C16—C11—C12 119.8 (4)
C2—C3—C4 120.4 (5) C16—C11—C8 121.2 (4)
C2—C3—H3 119.8 C12—C11—C8 118.9 (5)
C4—C3—H3 119.8 C13—C12—C11 120.5 (6)
C5—C4—C3 120.1 (6) C13—C12—H12 119.8
C5—C4—H4 119.9 C11—C12—H12 119.8
C3—C4—H4 119.9 C12—C13—C14 119.5 (5)
C4—C5—C6 121.0 (6) C12—C13—H13 120.3
C4—C5—H5 119.5 C14—C13—H13 120.3
C6—C5—H5 119.5 C15—C14—C13 119.6 (6)
C1—C6—C5 118.0 (5) C15—C14—H14 120.2
C1—C6—C7 118.2 (5) C13—C14—H14 120.2
C5—C6—C7 123.7 (5) C14—C15—C16 122.5 (6)
N1—C7—C6 127.5 (4) C14—C15—H15 118.7
N1—C7—C9 113.8 (4) C16—C15—H15 118.7
C6—C7—C9 118.4 (4) C15—C16—C11 118.0 (5)
O2—C8—C11 110.1 (4) C15—C16—C17 119.9 (5)
O2—C8—C9 103.1 (4) C11—C16—C17 122.1 (4)
C11—C8—C9 117.8 (4) C16—C17—H17A 109.5
O2—C8—H8 108.5 C16—C17—H17B 109.5
C11—C8—H8 108.5 H17A—C17—H17B 109.5
C9—C8—H8 108.5 C16—C17—H17C 109.5
C18—C9—C10 109.7 (3) H17A—C17—H17C 109.5
C18—C9—C7 108.9 (4) H17B—C17—H17C 109.5
C10—C9—C7 107.6 (3) N2—C18—C9 178.8 (5)
C18—C9—C8 113.6 (3) C7—N1—O2 109.1 (4)
C10—C9—C8 117.3 (4) C1—O1—C10 118.3 (4)
C7—C9—C8 98.7 (4) N1—O2—C8 107.9 (3)
O1—C10—C9 111.5 (4)
O1—C1—C2—C3 179.9 (4) C18—C9—C10—O1 62.9 (5)
C6—C1—C2—C3 0.4 (7) C7—C9—C10—O1 −55.5 (4)
C1—C2—C3—C4 −0.8 (8) C8—C9—C10—O1 −165.5 (4)
C2—C3—C4—C5 0.9 (8) O2—C8—C11—C16 −140.8 (4)
C3—C4—C5—C6 −0.7 (7) C9—C8—C11—C16 101.4 (5)
C2—C1—C6—C5 −0.2 (6) O2—C8—C11—C12 42.6 (5)
O1—C1—C6—C5 −179.7 (4) C9—C8—C11—C12 −75.2 (6)
C2—C1—C6—C7 177.9 (4) C16—C11—C12—C13 −1.1 (7)
O1—C1—C6—C7 −1.5 (6) C8—C11—C12—C13 175.5 (5)
C4—C5—C6—C1 0.3 (7) C11—C12—C13—C14 −1.5 (8)
C4—C5—C6—C7 −177.7 (4) C12—C13—C14—C15 2.6 (8)
C1—C6—C7—N1 163.8 (4) C13—C14—C15—C16 −1.0 (9)
C5—C6—C7—N1 −18.2 (7) C14—C15—C16—C11 −1.5 (7)
C1—C6—C7—C9 −10.4 (5) C14—C15—C16—C17 179.5 (5)
C5—C6—C7—C9 167.6 (4) C12—C11—C16—C15 2.6 (6)
N1—C7—C9—C18 103.9 (4) C8—C11—C16—C15 −174.0 (4)
C6—C7—C9—C18 −81.1 (4) C12—C11—C16—C17 −178.5 (5)
N1—C7—C9—C10 −137.2 (4) C8—C11—C16—C17 5.0 (6)
C6—C7—C9—C10 37.8 (5) C6—C7—N1—O2 −175.9 (4)
N1—C7—C9—C8 −14.8 (5) C9—C7—N1—O2 −1.4 (5)
C6—C7—C9—C8 160.2 (4) C2—C1—O1—C10 162.0 (4)
O2—C8—C9—C18 −91.3 (4) C6—C1—O1—C10 −18.6 (6)
C11—C8—C9—C18 30.2 (7) C9—C10—O1—C1 48.4 (5)
O2—C8—C9—C10 138.9 (4) C7—N1—O2—C8 18.6 (4)
C11—C8—C9—C10 −99.6 (5) C11—C8—O2—N1 −153.6 (3)
O2—C8—C9—C7 23.9 (4) C9—C8—O2—N1 −27.1 (4)
C11—C8—C9—C7 145.4 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2544).

References

  1. Brooks, G. T. (1998). Pestic. Sci. 22, 41–50.
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79–101. [DOI] [PubMed]
  4. Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603–607.
  5. Cai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627–2644. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Gabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91–126. Budapest: Akademiai Kiado.
  8. Gangadharan, R., SethuSankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o942. [DOI] [PMC free article] [PubMed]
  9. Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Swaminathan, K., Sethusankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o905. [DOI] [PMC free article] [PubMed]
  13. Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.
  14. Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349–360. [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051732/su2544sup1.cif

e-69-0o181-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051732/su2544Isup2.hkl

e-69-0o181-Isup2.hkl (84.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051732/su2544Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES