Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 4;69(Pt 2):o183. doi: 10.1107/S1600536812051689

1-(4-Chloro­phenyl)-2-[tris­(4-methyl­phenyl)-λ5-phosphanyl­idene]butane-1,3-dione

Seyyed Javad Sabounchei a,*, Parisa Shahriary a, Faegheh Hosseini Fashami a, David Morales-Morales b, Simon Hernandez-Ortega b
PMCID: PMC3569245  PMID: 23424468

Abstract

In the title ylide, C31H28ClO2P [common name α-acetyl-α-p-chloro­benzoyl­methyl­enetri(p-tol­yl)phospho­rane], the dihedral angle between the 4-chloro­phenyl ring and that of the ylide moiety is 66.15 (10)°. The geometry around the P atom is slightly distorted tetra­hedral [angle range = 105.22 (8)–115.52 (9)°] and the carbonyl O atoms are syn-oriented with respect to the P atom. The ylide group is close to planar [maximum deviation from the least-squares plane = 0.006 (2) Å] and the P—C, C—C and C=O bond lengths are consistent with electron delocalization involving the O atoms.

Related literature  

For a general background to organo­phospho­rus compounds and a review of stabilized phospho­nium ylides, see: Bachrach & Nitsche (1994). For other related literature on ylides, see: Wilson & Tebby (1972); Sabounchei et al. (2010). For analogous structures, see: Bart (1969); Kalyanasundari et al. (1994); Sabounchei et al. (2007); Castañeda et al. (2001, 2003). For bond distance and angle data, see: Dunitz (1979); Allen et al. (1987).graphic file with name e-69-0o183-scheme1.jpg

Experimental  

Crystal data  

  • C31H28ClO2P

  • M r = 498.95

  • Monoclinic, Inline graphic

  • a = 20.327 (2) Å

  • b = 14.7560 (15) Å

  • c = 18.9759 (19) Å

  • β = 113.140 (2)°

  • V = 5233.8 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.35 × 0.27 × 0.25 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • 21296 measured reflections

  • 4780 independent reflections

  • 3380 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.099

  • S = 1.00

  • 4780 reflections

  • 320 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051689/zs2244sup1.cif

e-69-0o183-sup1.cif (32.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051689/zs2244Isup2.hkl

e-69-0o183-Isup2.hkl (234.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051689/zs2244Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the University of Bu-Ali Sina for financial support. We are also indebted to the Instituto de Química, Universidad Nacional Autónoma de México, for the use of their X-ray diffractometer.

supplementary crystallographic information

Comment

X-ray structures of stabilized phosphonium ylides possessing a substituent that conjugates with the P═C double bond have been reviewed (Bachrach & Nitsche, 1994). Ylidic resonance is important in phosphonium ylides stabilized by electron-withdrawing substituents due to electronic delocalization between the P—C bond, the ylidic bond, and an acyl group (Castañeda et al., 2001, 2003). In the title compound, C31H28ClO2P (Fig. 1), the dihedral angle between the 4-chlorophenyl ring and the plane of the planar ylide moiety (defined by atoms P, C2, C3, O2, C4) is 66.15 (10)°. The geometry around the P atom is slightly distorted tetrahedral [angle range, 105.22 (8)–115.52 (9)Å]. The P–C2 bond [1.7540 (18) Å] is comparable with analogous distances (Kalyanasundari et al., 1994; Sabounchei et al., 2007) and is longer than the typical P═C double bond in methylenetriphenylphosphorane, Ph3P═CH2 (Bart, 1969), where there is no opportunity for conjugation with another group. For a similar reason, the C═O bonds are longer than the C═O bonds in ketones (Allen et al., 1987). In the title compound the difference between the C–O bond lengths in the C1–O1–Ph group compared to the C3–O2–CH3 group (0.016 Å) may be due to the presence of the extended resonance between the COCH3 group and the carbanion. The ylide C-atom is clearly sp2-hybridized, the sum of the bond angles [359 (4)°] being essentially 360°. The distortions from planarity of the extended ylide group (as induced by non-bonding interactions) are not extreme; the P—C2—C3═O2 torsion angle [2.3 (2)°] suggests a degree of coplanarity and concomitance, but the P—C2—C1—O1 angle [-37.1 (3)°] indicates some rotation of the second carbonyl group out of the plane. In ylides stabilized by a single keto or ester group, there is a strong interaction between cationoid phosphorus and the syn acyl O atom (Wilson & Tebby, 1972). The P···O2 [2.853 (1) Å] and P···O1 [3.088 (2) Å] distances are significantly shorter than the sum of the van der Waals radii of P and O (Dunitz, 1979), indicating a strong intramolecular interaction between the P+ and O- charge centers, which leads to the cis orientation.

Experimental

A mixture of parachlorobenzoyltri(paratolyl)phosphorane (0.03 mol) and acetic anhydride (0.3 mol) in dry chloroform (10–20 ml) was stirred at 60°C. The reaction was monitored by TLC. The resulting dark solution was evaporated at 80 °C (12 ml) to give a glue which was triturated with ether and the precipitated product was filtered and recrystallized using a solvent diffusion technique (yield; 65%: m.p. 459–458).

Refinement

The hydrogen atom positions were calculated and refined using a riding model technique, with C—Haromatic = 0.93 Å or C—Hmethyl = 0.96 Å, with Uiso(H) = 1.2Ueq(C)(aromatic) or 1.5Ueq(C)(methyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.

Crystal data

C31H28ClO2P F(000) = 2096
Mr = 498.95 Dx = 1.266 Mg m3
Monoclinic, C2/c Melting point = 458–459 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 20.327 (2) Å Cell parameters from 7723 reflections
b = 14.7560 (15) Å θ = 2.3–25.3°
c = 18.9759 (19) Å µ = 0.23 mm1
β = 113.140 (2)° T = 298 K
V = 5233.8 (9) Å3 Prism, yellow
Z = 8 0.35 × 0.27 × 0.25 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3380 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.045
Graphite monochromator θmax = 25.4°, θmin = 1.8°
Detector resolution: 0.83 pixels mm-1 h = −24→24
ω scans k = −17→17
21296 measured reflections l = −22→22
4780 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0456P)2] where P = (Fo2 + 2Fc2)/3
4780 reflections (Δ/σ)max < 0.001
320 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl 0.00240 (4) 0.88102 (4) 0.03610 (4) 0.0896 (3)
P 0.17486 (3) 0.37797 (3) 0.21740 (3) 0.03935 (15)
O1 0.16378 (8) 0.56120 (10) 0.29060 (8) 0.0645 (4)
O2 0.02681 (7) 0.33829 (10) 0.13545 (8) 0.0579 (4)
C1 0.12109 (10) 0.54772 (13) 0.22438 (11) 0.0454 (5)
C2 0.10499 (9) 0.45716 (12) 0.19188 (10) 0.0419 (5)
C3 0.03535 (10) 0.42100 (14) 0.14970 (11) 0.0467 (5)
C4 −0.03122 (10) 0.47932 (15) 0.12414 (13) 0.0653 (6)
H4A −0.0364 0.5109 0.0780 0.098*
H4B −0.0271 0.5224 0.1636 0.098*
H4C −0.0723 0.4416 0.1146 0.098*
C5 0.08882 (10) 0.62939 (13) 0.17585 (11) 0.0433 (5)
C6 0.07281 (10) 0.63087 (14) 0.09771 (12) 0.0507 (5)
H6 0.0796 0.5788 0.0738 0.061*
C7 0.04699 (11) 0.70818 (16) 0.05475 (12) 0.0593 (6)
H7 0.0364 0.7084 0.0024 0.071*
C8 0.03717 (11) 0.78467 (14) 0.09061 (13) 0.0576 (6)
C9 0.05338 (12) 0.78600 (15) 0.16758 (13) 0.0644 (6)
H9 0.0468 0.8385 0.1911 0.077*
C10 0.07965 (11) 0.70826 (14) 0.21011 (12) 0.0571 (6)
H10 0.0913 0.7091 0.2627 0.069*
C11 0.17988 (10) 0.30004 (12) 0.29265 (10) 0.0410 (5)
C12 0.12272 (11) 0.29172 (13) 0.31441 (11) 0.0492 (5)
H12 0.0813 0.3251 0.2890 0.059*
C13 0.12636 (12) 0.23438 (14) 0.37351 (12) 0.0556 (6)
H13 0.0874 0.2301 0.3874 0.067*
C14 0.18664 (13) 0.18355 (14) 0.41202 (12) 0.0545 (6)
C15 0.24374 (12) 0.19226 (14) 0.39040 (12) 0.0570 (6)
H15 0.2849 0.1584 0.4157 0.068*
C16 0.24135 (11) 0.24988 (13) 0.33223 (12) 0.0512 (5)
H16 0.2809 0.2552 0.3194 0.061*
C17 0.19077 (14) 0.11954 (16) 0.47598 (13) 0.0811 (8)
H17A 0.1538 0.1343 0.4936 0.122*
H17B 0.2366 0.1254 0.5176 0.122*
H17C 0.1845 0.0583 0.4573 0.122*
C18 0.25965 (9) 0.43610 (12) 0.25043 (10) 0.0389 (4)
C19 0.28960 (10) 0.46131 (13) 0.19951 (11) 0.0475 (5)
H19 0.2670 0.4455 0.1481 0.057*
C20 0.35285 (11) 0.50983 (14) 0.22410 (12) 0.0551 (6)
H20 0.3723 0.5255 0.1889 0.066*
C21 0.38777 (10) 0.53554 (13) 0.29975 (12) 0.0497 (5)
C22 0.35801 (10) 0.50872 (13) 0.35062 (11) 0.0479 (5)
H22 0.3809 0.5240 0.4021 0.058*
C23 0.29551 (10) 0.46009 (13) 0.32700 (11) 0.0458 (5)
H23 0.2769 0.4429 0.3626 0.055*
C24 0.45494 (12) 0.59149 (17) 0.32627 (14) 0.0790 (8)
H24A 0.4514 0.6396 0.3586 0.118*
H24B 0.4611 0.6167 0.2826 0.118*
H24C 0.4953 0.5539 0.3545 0.118*
C25 0.16994 (10) 0.31556 (12) 0.13338 (10) 0.0414 (5)
C26 0.20041 (11) 0.23050 (13) 0.13922 (12) 0.0510 (5)
H26 0.2223 0.2032 0.1870 0.061*
C27 0.19849 (12) 0.18588 (14) 0.07444 (13) 0.0571 (6)
H27 0.2197 0.1291 0.0796 0.069*
C28 0.16629 (11) 0.22285 (15) 0.00284 (12) 0.0524 (5)
C29 0.13751 (11) 0.30865 (15) −0.00266 (11) 0.0587 (6)
H29 0.1167 0.3362 −0.0505 0.070*
C30 0.13905 (11) 0.35433 (14) 0.06151 (11) 0.0529 (5)
H30 0.1190 0.4119 0.0563 0.063*
C31 0.16111 (13) 0.17156 (16) −0.06824 (13) 0.0760 (7)
H31A 0.1908 0.1186 −0.0536 0.114*
H31B 0.1768 0.2098 −0.0995 0.114*
H31C 0.1124 0.1538 −0.0967 0.114*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl 0.0792 (4) 0.0604 (4) 0.0944 (5) −0.0098 (3) −0.0035 (4) 0.0274 (3)
P 0.0384 (3) 0.0401 (3) 0.0382 (3) 0.0009 (2) 0.0137 (2) −0.0008 (2)
O1 0.0648 (10) 0.0623 (10) 0.0484 (9) 0.0131 (8) 0.0030 (8) −0.0117 (7)
O2 0.0500 (9) 0.0525 (9) 0.0657 (10) −0.0059 (7) 0.0169 (7) −0.0046 (8)
C1 0.0406 (11) 0.0503 (12) 0.0442 (12) 0.0052 (10) 0.0157 (10) −0.0035 (10)
C2 0.0394 (11) 0.0410 (11) 0.0427 (11) 0.0043 (9) 0.0133 (9) −0.0001 (9)
C3 0.0446 (12) 0.0486 (13) 0.0450 (12) 0.0018 (10) 0.0156 (10) 0.0029 (10)
C4 0.0407 (12) 0.0631 (14) 0.0856 (17) 0.0021 (11) 0.0179 (12) 0.0124 (13)
C5 0.0392 (11) 0.0422 (11) 0.0464 (12) −0.0025 (9) 0.0144 (9) −0.0029 (9)
C6 0.0528 (13) 0.0481 (13) 0.0508 (13) −0.0071 (10) 0.0199 (11) −0.0037 (10)
C7 0.0577 (14) 0.0663 (16) 0.0462 (13) −0.0176 (12) 0.0123 (11) 0.0040 (12)
C8 0.0496 (13) 0.0459 (13) 0.0617 (15) −0.0097 (10) 0.0051 (11) 0.0094 (11)
C9 0.0725 (16) 0.0437 (13) 0.0666 (16) 0.0046 (12) 0.0162 (13) −0.0033 (12)
C10 0.0655 (15) 0.0526 (13) 0.0489 (13) 0.0047 (11) 0.0177 (11) −0.0042 (11)
C11 0.0421 (11) 0.0395 (11) 0.0414 (11) −0.0013 (9) 0.0163 (9) −0.0020 (9)
C12 0.0454 (12) 0.0541 (13) 0.0497 (12) 0.0013 (10) 0.0204 (10) −0.0020 (10)
C13 0.0598 (14) 0.0600 (14) 0.0555 (14) −0.0097 (12) 0.0317 (12) −0.0015 (11)
C14 0.0718 (15) 0.0478 (13) 0.0447 (12) −0.0104 (11) 0.0237 (12) −0.0004 (10)
C15 0.0588 (14) 0.0524 (13) 0.0566 (14) 0.0074 (11) 0.0191 (12) 0.0109 (11)
C16 0.0465 (12) 0.0535 (13) 0.0555 (13) 0.0044 (10) 0.0221 (11) 0.0072 (10)
C17 0.115 (2) 0.0694 (16) 0.0632 (16) −0.0135 (15) 0.0399 (16) 0.0115 (13)
C18 0.0393 (11) 0.0383 (11) 0.0376 (11) 0.0040 (8) 0.0136 (9) 0.0014 (8)
C19 0.0509 (12) 0.0535 (12) 0.0371 (11) −0.0043 (10) 0.0161 (10) 0.0000 (9)
C20 0.0568 (13) 0.0627 (14) 0.0513 (13) −0.0084 (11) 0.0271 (11) 0.0050 (11)
C21 0.0444 (12) 0.0471 (12) 0.0547 (13) −0.0018 (10) 0.0163 (11) 0.0025 (10)
C22 0.0424 (12) 0.0524 (13) 0.0428 (12) −0.0006 (10) 0.0101 (10) −0.0044 (10)
C23 0.0446 (12) 0.0538 (12) 0.0396 (11) 0.0001 (10) 0.0173 (9) 0.0039 (9)
C24 0.0662 (16) 0.0871 (18) 0.0793 (18) −0.0277 (14) 0.0238 (14) −0.0006 (14)
C25 0.0390 (11) 0.0425 (11) 0.0419 (11) −0.0026 (9) 0.0151 (9) −0.0032 (9)
C26 0.0624 (14) 0.0430 (12) 0.0512 (13) 0.0019 (10) 0.0263 (11) 0.0014 (10)
C27 0.0722 (15) 0.0414 (12) 0.0666 (15) 0.0004 (11) 0.0367 (13) −0.0055 (11)
C28 0.0480 (12) 0.0570 (14) 0.0564 (14) −0.0082 (11) 0.0250 (11) −0.0144 (11)
C29 0.0563 (14) 0.0719 (16) 0.0402 (12) 0.0089 (12) 0.0106 (10) −0.0035 (11)
C30 0.0534 (13) 0.0547 (13) 0.0457 (13) 0.0134 (10) 0.0142 (10) −0.0024 (10)
C31 0.0838 (18) 0.0818 (17) 0.0694 (16) −0.0112 (15) 0.0376 (14) −0.0299 (14)

Geometric parameters (Å, º)

Cl—C8 1.737 (2) C15—H15 0.9300
P—C2 1.7540 (18) C16—H16 0.9300
P—C18 1.8028 (18) C17—H17A 0.9600
P—C11 1.8048 (19) C17—H17B 0.9600
P—C25 1.8097 (19) C17—H17C 0.9600
O1—C1 1.231 (2) C18—C19 1.380 (2)
O2—C3 1.247 (2) C18—C23 1.391 (2)
C1—C2 1.454 (3) C19—C20 1.383 (3)
C1—C5 1.502 (3) C19—H19 0.9300
C2—C3 1.428 (3) C20—C21 1.381 (3)
C3—C4 1.514 (3) C20—H20 0.9300
C4—H4A 0.9600 C21—C22 1.383 (3)
C4—H4B 0.9600 C21—C24 1.503 (3)
C4—H4C 0.9600 C22—C23 1.372 (2)
C5—C10 1.381 (3) C22—H22 0.9300
C5—C6 1.388 (3) C23—H23 0.9300
C6—C7 1.380 (3) C24—H24A 0.9600
C6—H6 0.9300 C24—H24B 0.9600
C7—C8 1.373 (3) C24—H24C 0.9600
C7—H7 0.9300 C25—C30 1.381 (3)
C8—C9 1.365 (3) C25—C26 1.385 (3)
C9—C10 1.383 (3) C26—C27 1.382 (3)
C9—H9 0.9300 C26—H26 0.9300
C10—H10 0.9300 C27—C28 1.368 (3)
C11—C12 1.383 (2) C27—H27 0.9300
C11—C16 1.391 (3) C28—C29 1.381 (3)
C12—C13 1.383 (3) C28—C31 1.514 (3)
C12—H12 0.9300 C29—C30 1.381 (3)
C13—C14 1.376 (3) C29—H29 0.9300
C13—H13 0.9300 C30—H30 0.9300
C14—C15 1.380 (3) C31—H31A 0.9600
C14—C17 1.514 (3) C31—H31B 0.9600
C15—C16 1.379 (3) C31—H31C 0.9600
C2—P—C18 109.80 (9) C11—C16—H16 119.9
C2—P—C11 115.52 (9) C14—C17—H17A 109.5
C18—P—C11 106.20 (8) C14—C17—H17B 109.5
C2—P—C25 109.72 (9) H17A—C17—H17B 109.5
C18—P—C25 105.22 (8) C14—C17—H17C 109.5
C11—P—C25 109.83 (9) H17A—C17—H17C 109.5
O1—C1—C2 122.17 (18) H17B—C17—H17C 109.5
O1—C1—C5 117.33 (17) C19—C18—C23 117.93 (17)
C2—C1—C5 120.40 (17) C19—C18—P 120.62 (14)
C3—C2—C1 126.13 (17) C23—C18—P 121.40 (14)
C3—C2—P 114.99 (14) C18—C19—C20 120.71 (18)
C1—C2—P 118.18 (14) C18—C19—H19 119.6
O2—C3—C2 120.67 (18) C20—C19—H19 119.6
O2—C3—C4 117.14 (18) C21—C20—C19 121.54 (18)
C2—C3—C4 122.11 (18) C21—C20—H20 119.2
C3—C4—H4A 109.5 C19—C20—H20 119.2
C3—C4—H4B 109.5 C20—C21—C22 117.36 (18)
H4A—C4—H4B 109.5 C20—C21—C24 121.81 (19)
C3—C4—H4C 109.5 C22—C21—C24 120.83 (19)
H4A—C4—H4C 109.5 C23—C22—C21 121.64 (18)
H4B—C4—H4C 109.5 C23—C22—H22 119.2
C10—C5—C6 118.13 (18) C21—C22—H22 119.2
C10—C5—C1 119.65 (18) C22—C23—C18 120.80 (18)
C6—C5—C1 122.03 (17) C22—C23—H23 119.6
C7—C6—C5 121.3 (2) C18—C23—H23 119.6
C7—C6—H6 119.4 C21—C24—H24A 109.5
C5—C6—H6 119.4 C21—C24—H24B 109.5
C8—C7—C6 118.8 (2) H24A—C24—H24B 109.5
C8—C7—H7 120.6 C21—C24—H24C 109.5
C6—C7—H7 120.6 H24A—C24—H24C 109.5
C9—C8—C7 121.4 (2) H24B—C24—H24C 109.5
C9—C8—Cl 119.74 (19) C30—C25—C26 118.02 (18)
C7—C8—Cl 118.84 (18) C30—C25—P 120.35 (15)
C8—C9—C10 119.2 (2) C26—C25—P 121.51 (15)
C8—C9—H9 120.4 C27—C26—C25 120.36 (19)
C10—C9—H9 120.4 C27—C26—H26 119.8
C5—C10—C9 121.1 (2) C25—C26—H26 119.8
C5—C10—H10 119.4 C28—C27—C26 121.9 (2)
C9—C10—H10 119.4 C28—C27—H27 119.0
C12—C11—C16 118.25 (18) C26—C27—H27 119.0
C12—C11—P 119.99 (15) C27—C28—C29 117.62 (19)
C16—C11—P 121.71 (15) C27—C28—C31 121.6 (2)
C11—C12—C13 120.85 (19) C29—C28—C31 120.8 (2)
C11—C12—H12 119.6 C30—C29—C28 121.2 (2)
C13—C12—H12 119.6 C30—C29—H29 119.4
C14—C13—C12 121.1 (2) C28—C29—H29 119.4
C14—C13—H13 119.5 C29—C30—C25 120.82 (19)
C12—C13—H13 119.5 C29—C30—H30 119.6
C13—C14—C15 117.94 (19) C25—C30—H30 119.6
C13—C14—C17 121.5 (2) C28—C31—H31A 109.5
C15—C14—C17 120.5 (2) C28—C31—H31B 109.5
C16—C15—C14 121.7 (2) H31A—C31—H31B 109.5
C16—C15—H15 119.1 C28—C31—H31C 109.5
C14—C15—H15 119.1 H31A—C31—H31C 109.5
C15—C16—C11 120.1 (2) H31B—C31—H31C 109.5
C15—C16—H16 119.9
O1—C1—C2—C3 132.8 (2) C12—C13—C14—C17 −179.07 (19)
C5—C1—C2—C3 −50.8 (3) C13—C14—C15—C16 0.1 (3)
O1—C1—C2—P −37.1 (3) C17—C14—C15—C16 179.9 (2)
C5—C1—C2—P 139.25 (15) C14—C15—C16—C11 −1.1 (3)
C18—P—C2—C3 167.12 (14) C12—C11—C16—C15 1.4 (3)
C11—P—C2—C3 −72.84 (16) P—C11—C16—C15 178.76 (15)
C25—P—C2—C3 51.94 (17) C2—P—C18—C19 −89.06 (16)
C18—P—C2—C1 −21.85 (17) C11—P—C18—C19 145.38 (15)
C11—P—C2—C1 98.18 (16) C25—P—C18—C19 28.95 (17)
C25—P—C2—C1 −137.04 (15) C2—P—C18—C23 88.39 (16)
C1—C2—C3—O2 −167.91 (18) C11—P—C18—C23 −37.16 (17)
P—C2—C3—O2 2.3 (2) C25—P—C18—C23 −153.59 (15)
C1—C2—C3—C4 8.8 (3) C23—C18—C19—C20 −0.8 (3)
P—C2—C3—C4 178.97 (15) P—C18—C19—C20 176.78 (15)
O1—C1—C5—C10 −29.4 (3) C18—C19—C20—C21 −0.7 (3)
C2—C1—C5—C10 154.09 (18) C19—C20—C21—C22 1.7 (3)
O1—C1—C5—C6 145.43 (19) C19—C20—C21—C24 −177.5 (2)
C2—C1—C5—C6 −31.1 (3) C20—C21—C22—C23 −1.3 (3)
C10—C5—C6—C7 −1.3 (3) C24—C21—C22—C23 177.91 (19)
C1—C5—C6—C7 −176.25 (18) C21—C22—C23—C18 −0.1 (3)
C5—C6—C7—C8 0.0 (3) C19—C18—C23—C22 1.2 (3)
C6—C7—C8—C9 1.0 (3) P—C18—C23—C22 −176.35 (14)
C6—C7—C8—Cl −178.27 (15) C2—P—C25—C30 27.03 (18)
C7—C8—C9—C10 −0.6 (3) C18—P—C25—C30 −91.03 (17)
Cl—C8—C9—C10 178.66 (17) C11—P—C25—C30 155.04 (15)
C6—C5—C10—C9 1.7 (3) C2—P—C25—C26 −156.82 (16)
C1—C5—C10—C9 176.79 (19) C18—P—C25—C26 85.11 (17)
C8—C9—C10—C5 −0.8 (3) C11—P—C25—C26 −28.82 (18)
C2—P—C11—C12 14.15 (18) C30—C25—C26—C27 −1.1 (3)
C18—P—C11—C12 136.13 (15) P—C25—C26—C27 −177.29 (16)
C25—P—C11—C12 −110.57 (16) C25—C26—C27—C28 −0.7 (3)
C2—P—C11—C16 −163.22 (15) C26—C27—C28—C29 2.2 (3)
C18—P—C11—C16 −41.24 (18) C26—C27—C28—C31 −176.8 (2)
C25—P—C11—C16 72.06 (18) C27—C28—C29—C30 −2.1 (3)
C16—C11—C12—C13 −0.6 (3) C31—C28—C29—C30 177.0 (2)
P—C11—C12—C13 −178.05 (15) C28—C29—C30—C25 0.4 (3)
C11—C12—C13—C14 −0.4 (3) C26—C25—C30—C29 1.2 (3)
C12—C13—C14—C15 0.7 (3) P—C25—C30—C29 177.46 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2244).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bachrach, S. M. & Nitsche, C. I. (1994). The Chemistry of Organophosphorus Compounds, edited by F. R. Hartley, Vol. 3, ch. 4, pp. 273–299. Chichester: Wiley.
  3. Bart, J. C. J. (1969). J. Chem. Soc. B, pp. 350–365.
  4. Bruker (1999). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Castañeda, F., Terraza, C. A., Bunton, C. A., Gillitt, N. D. & Garland, M. T. (2003). Phosphorus Sulfur Silicon Relat. Elem. 178, 1973–1985.
  6. Castañeda, F., Terraza, C. A., Garland, M. T., Bunton, C. A. & Baggio, R. F. (2001). Acta Cryst. C57, 180–184. [DOI] [PubMed]
  7. Dunitz, J. D. (1979). X-ray Analysis and the Structure of Organic Molecules, pp. 335–340. Ithaca: Cornell University Press.
  8. Kalyanasundari, M., Panchanatheswaran, K., Parthasarathi, V., Robinson, W. T. & Wen, H. (1994). Acta Cryst. C50, 1738–1741.
  9. Sabounchei, S. J., Dadras, A., Jafarzadeh, M. & Khavasi, H. R. (2007). Acta Cryst. E63, o3160.
  10. Sabounchei, S. J., Shahriary, P., Bolboli Nojini, Z., Khavasi, H. R., Arici, C. & Dal, H. (2010). Heteroat. Chem. 21, 475–485.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Wilson, I. F. & Tebby, J. C. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 31–34.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051689/zs2244sup1.cif

e-69-0o183-sup1.cif (32.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051689/zs2244Isup2.hkl

e-69-0o183-Isup2.hkl (234.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051689/zs2244Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES