Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 4;69(Pt 2):o185. doi: 10.1107/S1600536812051690

(2,3-Difluoro­phen­yl)(4-tosyl­piperazin-1-yl)methanone

S Sreenivasa a,*, K E ManojKumar a, P A Suchetan b, J Tonannavar c, Yashshwita Chavan c, B S Palakshamurthy d
PMCID: PMC3569247  PMID: 23424470

Abstract

In the title compound, C18H18F2N2O3S, the piperazine ring adopts a chair conformation. The dihedral angle between the sulfonyl-bound benzene ring and the best fit plane throught the six non-H atoms of the piperazine ring is 69.4 (2)°, while those between the fluoro­benzene and sulfonyl rings and the fluoro­benzene and piperazine rings are 30.97 (2) and 75.98 (2)°, respectively. In the crystal, mol­ecules are connected to form a tetra­meric unit through C—H⋯O hydrogen bonds. The structure is further stabilized by weak inter­molecular C—H⋯F inter­actions, generating C(8) and C(7) chains running along [100].

Related literature  

For the synthesis, characterization and biological activity of piperazine and its derivatives, see: Gan et al. (2009a ,b ). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-69-0o185-scheme1.jpg

Experimental  

Crystal data  

  • C18H18F2N2O3S

  • M r = 380.40

  • Monoclinic, Inline graphic

  • a = 17.0456 (4) Å

  • b = 7.6026 (1) Å

  • c = 15.5113 (3) Å

  • β = 113.513 (1)°

  • V = 1843.22 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 K

  • 0.28 × 0.26 × 0.20 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.942, T max = 0.958

  • 11988 measured reflections

  • 2359 independent reflections

  • 1930 reflections with I > 2σ(I)

  • R int = 0.023

  • θmax = 22.4°

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.092

  • S = 1.06

  • 2359 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker,2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051690/sj5290sup1.cif

e-69-0o185-sup1.cif (26.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051690/sj5290Isup2.hkl

e-69-0o185-Isup2.hkl (115.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051690/sj5290Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.93 2.58 3.495 (3) 169
C8—H8A⋯O3ii 0.97 2.34 3.255 (3) 157
C10—H10B⋯O1iii 0.97 2.48 3.402 (3) 159
C8—H8B⋯F1iv 0.97 2.57 3.518 (3) 165
C11—H11A⋯F2iv 0.97 2.56 3.296 (3) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank Dr S. C. Sharma, Vice Chancellor, Tumkur University, for his constant encouragement. JT also thanks the DST, New Delhi, for the SCXRD facility under the PURSE Grant (SR/S9/Z-23/2008/11, 2009) at USIC, Karnatak University.

supplementary crystallographic information

Comment

Numerous piperazine derivatives such as aryl amides, sulphonamides, Mannich bases, Schiff's bases, thiazolidinones, azetidinones, imidazolinones have shown a wide spectrum of biological activities viz. anti-inflammatory, antibacterial, antimalarial, anticonvulsant, antipyretic, antitumor, anthelmintics, analgesic, antidepressant, antifungal, antitubercular, anticancer, antidiabetic effects (Gan et al., 2009a, 2009b). Keeping this in mind, we synthesized the title compound to study its crystal structure.

The compound crystallizes in monoclinic crystal system and the space group P21/c. In the crystal structure, the piperazine ring adopts chair conformation. The dihedral angle between the sulfonyl bound benzene ring and the best fit plane through all six atoms of the piperazine ring is 69.4 (2)°, while those between the fluorobenzene and the sulfonyl rings and the fluorobenzene and the piperazine rings are 30.97 (2)° and 75.98 (2)° respectively. In the crystal structure molecules form a tetrameric unit generating alternate R22(22), (C8—H8A···O3, C10—H10B···O1) and inversion related C4—H4···O3 R22(10) rings (Bernstein et al.1995). The structure is further stabilized by weak intermolecular C11—H11A···F2 and C8—H8B···F1 interactions.

Experimental

1-Tosylpiperazine (0.01 mmol) and triethylamine (0.02 mmol) were dissolved in 10 ml of dichloromethane (CH2Cl2). The mixture was cooled to 0°C and 1-propanephosphonic acid anhydride (0.02 mmol) and 2,4-diflurobenzoic acid (0.01 mmol) added. The reaction mixture was stirred at 80°C for 14 h. The reaction was monitored by TLC and the solvent removed yielding the crude product. The crude mass was purified by chromatography on 230–400 silica gel with petroleum ether and ethyl acetate as eluents. Single crystals of the title compound were obtained from slow evaporation of a solution of the compound in petroleum ether and ethyl acetate (1:4).

Refinement

H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 - 0.97 Å. The isotropic displacement parameters for all H atoms were set to 1.2 times Ueq of the parent atom or 1.5 times that of the parent atom for CH3.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C18H18F2N2O3S Prism
Mr = 380.40 Dx = 1.371 Mg m3
Monoclinic, P21/c Melting point: 457 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 17.0456 (4) Å Cell parameters from 2364 reflections
b = 7.6026 (1) Å θ = 2.6–22.4°
c = 15.5113 (3) Å µ = 0.22 mm1
β = 113.513 (1)° T = 298 K
V = 1843.22 (6) Å3 Prism, colourless
Z = 4 0.28 × 0.26 × 0.20 mm
F(000) = 792

Data collection

Bruker APEXII CCD diffractometer 2359 independent reflections
Radiation source: fine-focus sealed tube 1930 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
Detector resolution: 0.95 pixels mm-1 θmax = 22.4°, θmin = 2.6°
φ and ω scans h = −18→15
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −8→7
Tmin = 0.942, Tmax = 0.958 l = −16→16
11988 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.3661P] where P = (Fo2 + 2Fc2)/3
2359 reflections (Δ/σ)max = 0.001
236 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.23 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.56842 (15) 0.1855 (3) −0.19563 (16) 0.0606 (6)
C2 0.50273 (17) 0.2154 (3) −0.28076 (15) 0.0652 (6)
C3 0.42103 (17) 0.2278 (3) −0.28889 (17) 0.0712 (7)
H3 0.3767 0.2486 −0.3470 0.085*
C4 0.40468 (16) 0.2091 (3) −0.20946 (19) 0.0788 (7)
H4 0.3488 0.2165 −0.2137 0.095*
C5 0.47062 (17) 0.1794 (3) −0.12370 (17) 0.0710 (7)
H5 0.4587 0.1672 −0.0705 0.085*
C6 0.55410 (14) 0.1675 (3) −0.11526 (14) 0.0542 (6)
C7 0.62575 (15) 0.1198 (3) −0.02411 (15) 0.0599 (6)
C8 0.71988 (15) 0.1996 (3) 0.13429 (14) 0.0644 (6)
H8A 0.7369 0.0777 0.1353 0.077*
H8B 0.6944 0.2135 0.1797 0.077*
C9 0.79693 (15) 0.3155 (3) 0.16094 (15) 0.0632 (6)
H9A 0.8364 0.2901 0.2249 0.076*
H9B 0.8260 0.2935 0.1195 0.076*
C10 0.71040 (13) 0.5453 (3) 0.05710 (14) 0.0574 (6)
H10A 0.7382 0.5278 0.0141 0.069*
H10B 0.6938 0.6679 0.0542 0.069*
C11 0.63270 (14) 0.4302 (3) 0.02931 (15) 0.0598 (6)
H11A 0.6015 0.4580 0.0679 0.072*
H11B 0.5954 0.4525 −0.0358 0.072*
C12 0.91357 (14) 0.6645 (3) 0.15849 (14) 0.0584 (6)
C13 0.98919 (15) 0.5691 (3) 0.19152 (16) 0.0659 (6)
H13 1.0022 0.4951 0.2431 0.079*
C14 1.04489 (16) 0.5843 (3) 0.14784 (19) 0.0746 (7)
H14 1.0952 0.5191 0.1702 0.089*
C15 1.02791 (17) 0.6943 (3) 0.07146 (18) 0.0730 (7)
C16 0.95135 (18) 0.7848 (3) 0.03828 (17) 0.0742 (7)
H16 0.9379 0.8565 −0.0143 0.089*
C17 0.89459 (16) 0.7722 (3) 0.08056 (16) 0.0659 (6)
H17 0.8437 0.8354 0.0571 0.079*
C18 1.0916 (2) 0.7155 (4) 0.0280 (2) 0.1021 (10)
H18A 1.0634 0.7612 −0.0346 0.153*
H18B 1.1165 0.6034 0.0256 0.153*
H18C 1.1357 0.7956 0.0651 0.153*
N1 0.65731 (11) 0.2441 (2) 0.04104 (11) 0.0572 (5)
N2 0.76965 (11) 0.5003 (2) 0.15333 (11) 0.0571 (5)
O1 0.65057 (13) −0.0330 (2) −0.01083 (11) 0.0937 (6)
O2 0.88639 (11) 0.5727 (2) 0.30408 (10) 0.0772 (5)
O3 0.79753 (10) 0.8085 (2) 0.20235 (11) 0.0740 (5)
F1 0.64895 (9) 0.1741 (2) −0.19068 (10) 0.0971 (5)
F2 0.52079 (11) 0.2303 (2) −0.35774 (10) 0.1029 (6)
S1 0.84155 (4) 0.64492 (7) 0.21283 (4) 0.0619 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0636 (15) 0.0573 (14) 0.0623 (15) 0.0075 (12) 0.0267 (13) 0.0050 (11)
C2 0.0869 (18) 0.0589 (15) 0.0500 (14) 0.0087 (13) 0.0274 (14) 0.0016 (10)
C3 0.0761 (18) 0.0625 (16) 0.0607 (15) 0.0060 (13) 0.0122 (13) −0.0038 (11)
C4 0.0635 (16) 0.0821 (19) 0.087 (2) 0.0011 (14) 0.0268 (16) −0.0009 (14)
C5 0.0809 (18) 0.0705 (16) 0.0687 (16) 0.0017 (14) 0.0372 (15) 0.0020 (12)
C6 0.0702 (15) 0.0380 (12) 0.0526 (13) 0.0016 (10) 0.0226 (11) −0.0001 (9)
C7 0.0803 (16) 0.0451 (15) 0.0530 (13) 0.0055 (12) 0.0252 (12) 0.0038 (11)
C8 0.0877 (17) 0.0441 (13) 0.0535 (13) 0.0094 (12) 0.0198 (12) 0.0069 (10)
C9 0.0733 (15) 0.0474 (14) 0.0556 (13) 0.0164 (12) 0.0117 (12) 0.0094 (10)
C10 0.0643 (14) 0.0413 (13) 0.0549 (13) 0.0079 (11) 0.0115 (11) 0.0077 (9)
C11 0.0672 (14) 0.0435 (13) 0.0596 (13) 0.0097 (11) 0.0158 (11) 0.0037 (10)
C12 0.0631 (14) 0.0409 (12) 0.0522 (12) −0.0002 (11) 0.0031 (11) −0.0037 (10)
C13 0.0656 (15) 0.0497 (14) 0.0621 (14) 0.0027 (12) 0.0040 (13) −0.0012 (11)
C14 0.0597 (15) 0.0575 (16) 0.0884 (18) 0.0001 (13) 0.0105 (14) −0.0153 (14)
C15 0.0815 (18) 0.0529 (15) 0.0763 (17) −0.0159 (14) 0.0227 (15) −0.0202 (13)
C16 0.0898 (19) 0.0559 (16) 0.0635 (15) −0.0092 (14) 0.0163 (15) −0.0017 (12)
C17 0.0702 (15) 0.0513 (15) 0.0592 (14) 0.0028 (12) 0.0079 (13) 0.0031 (11)
C18 0.109 (2) 0.089 (2) 0.120 (2) −0.0272 (18) 0.058 (2) −0.0307 (18)
N1 0.0741 (12) 0.0373 (11) 0.0504 (10) 0.0061 (9) 0.0144 (9) 0.0024 (8)
N2 0.0660 (11) 0.0395 (10) 0.0518 (10) 0.0089 (9) 0.0089 (9) 0.0057 (8)
O1 0.1381 (16) 0.0460 (11) 0.0679 (10) 0.0203 (10) 0.0104 (10) −0.0024 (8)
O2 0.0933 (12) 0.0732 (11) 0.0470 (8) 0.0107 (9) 0.0088 (8) 0.0031 (7)
O3 0.0833 (11) 0.0487 (9) 0.0760 (10) 0.0128 (8) 0.0169 (9) −0.0088 (7)
F1 0.0793 (10) 0.1325 (14) 0.0878 (10) 0.0192 (9) 0.0422 (8) 0.0291 (9)
F2 0.1248 (13) 0.1301 (14) 0.0601 (9) 0.0342 (11) 0.0437 (9) 0.0201 (8)
S1 0.0722 (4) 0.0485 (4) 0.0499 (3) 0.0083 (3) 0.0084 (3) −0.0018 (2)

Geometric parameters (Å, º)

C1—F1 1.347 (2) C10—H10A 0.9700
C1—C2 1.367 (3) C10—H10B 0.9700
C1—C6 1.369 (3) C11—N1 1.466 (3)
C2—C3 1.351 (3) C11—H11A 0.9700
C2—F2 1.352 (3) C11—H11B 0.9700
C3—C4 1.375 (3) C12—C13 1.387 (3)
C3—H3 0.9300 C12—C17 1.387 (3)
C4—C5 1.375 (3) C12—S1 1.751 (2)
C4—H4 0.9300 C13—C14 1.374 (3)
C5—C6 1.379 (3) C13—H13 0.9300
C5—H5 0.9300 C14—C15 1.383 (4)
C6—C7 1.498 (3) C14—H14 0.9300
C7—O1 1.225 (3) C15—C16 1.380 (4)
C7—N1 1.330 (3) C15—C18 1.497 (4)
C8—N1 1.454 (3) C16—C17 1.372 (3)
C8—C9 1.496 (3) C16—H16 0.9300
C8—H8A 0.9700 C17—H17 0.9300
C8—H8B 0.9700 C18—H18A 0.9600
C9—N2 1.470 (3) C18—H18B 0.9600
C9—H9A 0.9700 C18—H18C 0.9600
C9—H9B 0.9700 N2—S1 1.6311 (17)
C10—N2 1.470 (2) O2—S1 1.4234 (15)
C10—C11 1.500 (3) O3—S1 1.4281 (16)
F1—C1—C2 119.3 (2) C10—C11—H11A 109.5
F1—C1—C6 119.3 (2) N1—C11—H11B 109.5
C2—C1—C6 121.4 (2) C10—C11—H11B 109.5
C3—C2—F2 120.1 (2) H11A—C11—H11B 108.1
C3—C2—C1 121.2 (2) C13—C12—C17 119.3 (2)
F2—C2—C1 118.7 (2) C13—C12—S1 120.31 (18)
C2—C3—C4 118.6 (2) C17—C12—S1 120.34 (18)
C2—C3—H3 120.7 C14—C13—C12 119.8 (2)
C4—C3—H3 120.7 C14—C13—H13 120.1
C3—C4—C5 120.3 (2) C12—C13—H13 120.1
C3—C4—H4 119.9 C13—C14—C15 121.6 (2)
C5—C4—H4 119.9 C13—C14—H14 119.2
C4—C5—C6 121.1 (2) C15—C14—H14 119.2
C4—C5—H5 119.4 C16—C15—C14 117.7 (3)
C6—C5—H5 119.4 C16—C15—C18 121.7 (3)
C1—C6—C5 117.3 (2) C14—C15—C18 120.6 (3)
C1—C6—C7 120.6 (2) C17—C16—C15 121.9 (2)
C5—C6—C7 121.8 (2) C17—C16—H16 119.0
O1—C7—N1 122.5 (2) C15—C16—H16 119.0
O1—C7—C6 119.0 (2) C16—C17—C12 119.6 (2)
N1—C7—C6 118.36 (19) C16—C17—H17 120.2
N1—C8—C9 110.67 (17) C12—C17—H17 120.2
N1—C8—H8A 109.5 C15—C18—H18A 109.5
C9—C8—H8A 109.5 C15—C18—H18B 109.5
N1—C8—H8B 109.5 H18A—C18—H18B 109.5
C9—C8—H8B 109.5 C15—C18—H18C 109.5
H8A—C8—H8B 108.1 H18A—C18—H18C 109.5
N2—C9—C8 109.02 (18) H18B—C18—H18C 109.5
N2—C9—H9A 109.9 C7—N1—C8 120.31 (17)
C8—C9—H9A 109.9 C7—N1—C11 125.61 (17)
N2—C9—H9B 109.9 C8—N1—C11 114.06 (16)
C8—C9—H9B 109.9 C9—N2—C10 111.79 (16)
H9A—C9—H9B 108.3 C9—N2—S1 117.19 (14)
N2—C10—C11 109.02 (16) C10—N2—S1 118.30 (13)
N2—C10—H10A 109.9 O2—S1—O3 119.91 (10)
C11—C10—H10A 109.9 O2—S1—N2 106.66 (9)
N2—C10—H10B 109.9 O3—S1—N2 106.31 (9)
C11—C10—H10B 109.9 O2—S1—C12 108.06 (10)
H10A—C10—H10B 108.3 O3—S1—C12 107.97 (10)
N1—C11—C10 110.57 (17) N2—S1—C12 107.32 (9)
N1—C11—H11A 109.5
F1—C1—C2—C3 180.0 (2) C15—C16—C17—C12 −0.6 (3)
C6—C1—C2—C3 −0.2 (4) C13—C12—C17—C16 −1.0 (3)
F1—C1—C2—F2 0.8 (3) S1—C12—C17—C16 −179.41 (17)
C6—C1—C2—F2 −179.4 (2) O1—C7—N1—C8 −4.0 (3)
F2—C2—C3—C4 178.9 (2) C6—C7—N1—C8 172.92 (19)
C1—C2—C3—C4 −0.2 (4) O1—C7—N1—C11 178.1 (2)
C2—C3—C4—C5 0.4 (4) C6—C7—N1—C11 −5.1 (3)
C3—C4—C5—C6 −0.1 (4) C9—C8—N1—C7 127.7 (2)
F1—C1—C6—C5 −179.7 (2) C9—C8—N1—C11 −54.1 (3)
C2—C1—C6—C5 0.5 (3) C10—C11—N1—C7 −128.3 (2)
F1—C1—C6—C7 −5.4 (3) C10—C11—N1—C8 53.6 (2)
C2—C1—C6—C7 174.8 (2) C8—C9—N2—C10 −60.2 (2)
C4—C5—C6—C1 −0.3 (3) C8—C9—N2—S1 158.59 (15)
C4—C5—C6—C7 −174.6 (2) C11—C10—N2—C9 59.8 (2)
C1—C6—C7—O1 −76.6 (3) C11—C10—N2—S1 −159.43 (14)
C5—C6—C7—O1 97.4 (3) C9—N2—S1—O2 −44.59 (18)
C1—C6—C7—N1 106.4 (2) C10—N2—S1—O2 176.77 (15)
C5—C6—C7—N1 −79.5 (3) C9—N2—S1—O3 −173.63 (15)
N1—C8—C9—N2 55.6 (2) C10—N2—S1—O3 47.72 (18)
N2—C10—C11—N1 −54.7 (2) C9—N2—S1—C12 71.02 (17)
C17—C12—C13—C14 1.0 (3) C10—N2—S1—C12 −67.62 (17)
S1—C12—C13—C14 179.43 (16) C13—C12—S1—O2 18.83 (19)
C12—C13—C14—C15 0.5 (3) C17—C12—S1—O2 −162.78 (17)
C13—C14—C15—C16 −2.0 (3) C13—C12—S1—O3 149.92 (17)
C13—C14—C15—C18 176.9 (2) C17—C12—S1—O3 −31.70 (19)
C14—C15—C16—C17 2.1 (3) C13—C12—S1—N2 −95.85 (17)
C18—C15—C16—C17 −176.9 (2) C17—C12—S1—N2 82.53 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O3i 0.93 2.58 3.495 (3) 169
C8—H8A···O3ii 0.97 2.34 3.255 (3) 157
C10—H10B···O1iii 0.97 2.48 3.402 (3) 159
C8—H8B···F1iv 0.97 2.57 3.518 (3) 165
C11—H11A···F2iv 0.97 2.56 3.296 (3) 133

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y−1, z; (iii) x, y+1, z; (iv) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5290).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gan, L. L., Cai, J. L. & Zhou, C. H. (2009a). Chin. Pharm. J. 44, 1361–1368.
  5. Gan, L. L., Lu, Y. H. & Zhou, C. H. (2009b). Chin. J. Biochem. Pharm 30, 127–131.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051690/sj5290sup1.cif

e-69-0o185-sup1.cif (26.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051690/sj5290Isup2.hkl

e-69-0o185-Isup2.hkl (115.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051690/sj5290Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES