Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 4;69(Pt 2):o187. doi: 10.1107/S1600536812050854

(E)-3-Amino-4-(2-phenyl­hydrazinyl­idene)-1H-pyrazol-5(4H)-one

Galal H Elgemeie a,*, Shahinaz H Sayed a, Peter G Jones b
PMCID: PMC3569249  PMID: 23424472

Abstract

The mol­ecule of the title compound, C9H9N5O, is essentially planar (r.m.s. deviation of all atoms = 0.02 Å) except for the NH2 H atoms. An intra­molecular hydrazinyl­idene–carbonyl N—H⋯O=C hydrogen bond is present. In the crystal, mol­ecules are connected via N—H⋯N/O hydrogen bonds, forming thick layers parallel to (100).

Related literature  

The synthesis, chemistry and biological/medical activity of related compounds is described in: Elgemeie (2003); Elgemeie & El-Aziz (2002); Elgemeie & Sood (2003, 2006); Elgemeie et al. (2001, 2007, 2008, 2009).graphic file with name e-69-0o187-scheme1.jpg

Experimental  

Crystal data  

  • C9H9N5O

  • M r = 203.21

  • Monoclinic, Inline graphic

  • a = 6.7380 (2) Å

  • b = 13.4310 (4) Å

  • c = 10.4563 (3) Å

  • β = 103.094 (3)°

  • V = 921.67 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.86 mm−1

  • T = 100 K

  • 0.15 × 0.10 × 0.03 mm

Data collection  

  • Oxford Diffraction Xcalibur (Atlas, Nova) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.668, T max = 1.000

  • 26682 measured reflections

  • 1914 independent reflections

  • 1807 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.087

  • S = 1.05

  • 1914 reflections

  • 152 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812050854/gg2105sup1.cif

e-69-0o187-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050854/gg2105Isup3.hkl

e-69-0o187-Isup3.hkl (94.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812050854/gg2105Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯O1i 0.909 (16) 1.949 (16) 2.8521 (11) 172.0 (14)
N3—H03B⋯N2ii 0.934 (17) 2.424 (16) 3.2711 (12) 150.8 (13)
N3—H03A⋯O1iii 0.908 (16) 2.141 (15) 2.9635 (11) 150.2 (13)
N5—H05⋯O1 0.897 (16) 2.174 (16) 2.8575 (11) 132.5 (13)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

Chemically synthesized purine analogues find numerous applications in clinical medicine and medical research (Elgemeie, 2003; Elgemeie et al., 2008). The pharmacological approach involves analogues in which the heterocyclic ring system has been modified so as to induce toxic effects when the analogue is incorporated into specific cell constituents (Elgemeie & El-Aziz, 2002). As part of our program directed towards the synthesis of purines and other antimetabolites (Elgemeie et al., 2001, 2009), we have recently reported various successful approaches to the syntheses of purine analogues. Derivatives of these ring systems are of interest as antimetabolites in biochemical reactions (Elgemeie & Sood, 2003). We have described several novel syntheses of functionalized pyrazoles (Elgemeie et al., 2007). These compounds are considered important intermediates for the synthesis of various purine ring systems (Elgemeie & Sood, 2006). As a continuation of this work, the title pyrazole compound (2), was prepared as a precursor for the synthesis of other purines. 2-Hydrazinyl-2-oxo-N-phenylacetohydrazonoyl cyanide (1) undergoes intramolecular cyclization by refluxing in ethanol containing catalytic amounts of piperidine to give the novel pyrazole derivative (2). The title compound can potentially exist in two other tautomeric forms with hydroxyl groups, (3) and (4). Spectral studies, however, indicated the presence of the ketonic tautomer (2) in solution (e.g. the 13C NMR signal at δ = 174.00, indicating a carbonyl carbon rather than C—OH.

The X-ray analysis of (2) (Fig. 1) establishes the exclusive presence of the keto tautomer in the solid state; all H atoms could be located unambiguously and bond lengths are also consistent with the keto form. The entire molecule is planar (r.m.s. deviation of all non-C atoms: 0.02 Å), except for the H atoms of the NH2 group; H03A lies 0.36 (2) and H03B 0.27 (2) Å outside the plane. Consistent with the E configuration, an intramolecular hydrogen bond N5—H05···O1 is observed.

The molecules are connected by hydrogen bonds #1–#3 to form thick hydrogen-bonded layers parallel to (100); the individual molecules are to a good approximation oriented in the planes (042) (Figs. 2, 3). Hydrogen bond #4 is the second and appreciably less linear branch of a three-centre interaction.

Experimental

The title compound was obtained by refluxing an ethanolic solution of 2-hydrazinyl-2-oxo-N-phenylacetohydrazonoyl cyanide containing a few drops of piperidine for 1 h. After cooling, the precipitate was filtered off and recrystallized from ethanol. Yield (85%); m.p. 245 °C; IR (KBr) ν = 3450, 3350, 3300 (NH2, NH), 1660 (C═O, s) cm-1; 1H NMR (DMSO) δ = 6.88 (s, br, 2H, NH2), 7.23 (s, br, 1H, NH), 7.41–7.92 (m, 5H, C6H5); MS, m/z = 203; Calc. for C9H9N5O: C, 53.19; H, 4.46; N, 34.46; O, 7.87. Found: C, 53.56; H, 4.57; N, 34.62; O, 7.61%.

Refinement

The NH H atoms were refined freely. Other H atoms were placed in calculated positions and refined using a riding model with C—Harom 0.95 Å; the hydrogen U values were fixed at 1.2 × U(eq) of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Ellipsoids represent 50% probability levels.

Fig. 2.

Fig. 2.

Packing diagram of the title compound projected along the b axis, showing the layer structure side-on.

Fig. 3.

Fig. 3.

Packing diagram of the title compound, viewed perpendicular to (100). Thick dashed bonds represent classical H bonds. Atom names correspond to the asymmetric unit; hydrogen bonds are numbered according to the Table on page Sup-7 (#4, the weaker part of a three-centre interaction, is omitted, as is the intramolecular interaction #5).

Fig. 4.

Fig. 4.

The formation of the title compound

Crystal data

C9H9N5O F(000) = 424
Mr = 203.21 Dx = 1.464 Mg m3
Monoclinic, P21/c Melting point: 518 K
Hall symbol: -P 2ybc Cu Kα radiation, λ = 1.54184 Å
a = 6.7380 (2) Å Cell parameters from 18413 reflections
b = 13.4310 (4) Å θ = 3.3–75.6°
c = 10.4563 (3) Å µ = 0.86 mm1
β = 103.094 (3)° T = 100 K
V = 921.67 (5) Å3 Tablet, orange-brown
Z = 4 0.15 × 0.10 × 0.03 mm

Data collection

Oxford Diffraction Xcalibur (Atlas, Nova) diffractometer 1914 independent reflections
Radiation source: Nova (Cu) X-ray Source 1807 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.029
Detector resolution: 10.3543 pixels mm-1 θmax = 75.8°, θmin = 5.5°
ω–scan h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −16→16
Tmin = 0.668, Tmax = 1.000 l = −13→13
26682 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.2869P] where P = (Fo2 + 2Fc2)/3
1914 reflections (Δ/σ)max < 0.001
152 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)- 6.7047 (0.0004) x + 0.5009 (0.0024) y + 3.2946 (0.0013) z = 0.2057 (0.0017)* -0.0265 (0.0007) O1 * -0.0015 (0.0008) N1 * 0.0248 (0.0008) N2 * 0.0064 (0.0007) N3 * -0.0035 (0.0008) N4 * 0.0047 (0.0008) N5 * 0.0127 (0.0009) C3 * -0.0173 (0.0009) C4 * -0.0155 (0.0009) C5 * 0.0096 (0.0009) C11 * 0.0334 (0.0009) C12 * 0.0207 (0.0009) C13 * -0.0104 (0.0009) C14 * -0.0239 (0.0009) C15 * -0.0136 (0.0009) C16 0.3618 (0.0145) H03A 0.2676 (0.0152) H03BRms deviation of fitted atoms = 0.0175
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.09284 (11) 0.44649 (5) 0.17545 (7) 0.02234 (19)
N1 0.06030 (14) 0.60858 (6) 0.09217 (8) 0.0210 (2)
H01 0.008 (2) 0.5972 (11) 0.0053 (16) 0.036 (4)*
N2 0.08679 (13) 0.70841 (6) 0.13887 (8) 0.0210 (2)
C3 0.15061 (15) 0.70044 (7) 0.26628 (10) 0.0188 (2)
C4 0.16773 (15) 0.59729 (7) 0.30772 (10) 0.0182 (2)
C5 0.10365 (15) 0.53946 (8) 0.18664 (9) 0.0190 (2)
N3 0.19896 (14) 0.77858 (7) 0.35089 (9) 0.0230 (2)
H03B 0.202 (2) 0.7633 (12) 0.4385 (16) 0.041 (4)*
H03A 0.135 (2) 0.8364 (12) 0.3206 (15) 0.036 (4)*
N4 0.22316 (12) 0.56774 (6) 0.42917 (8) 0.0180 (2)
N5 0.22648 (13) 0.47167 (6) 0.45303 (8) 0.0193 (2)
H05 0.189 (2) 0.4280 (12) 0.3870 (15) 0.034 (4)*
C11 0.28700 (14) 0.43692 (8) 0.58298 (10) 0.0190 (2)
C12 0.28637 (16) 0.33470 (8) 0.60446 (11) 0.0229 (2)
H12 0.2442 0.2901 0.5329 0.028*
C13 0.34813 (16) 0.29858 (8) 0.73178 (11) 0.0268 (3)
H13 0.3487 0.2289 0.7473 0.032*
C14 0.40897 (16) 0.36360 (9) 0.83626 (11) 0.0283 (3)
H14 0.4516 0.3386 0.9232 0.034*
C15 0.40732 (17) 0.46548 (9) 0.81331 (10) 0.0271 (3)
H15 0.4484 0.5099 0.8851 0.033*
C16 0.34645 (16) 0.50330 (8) 0.68682 (10) 0.0223 (2)
H16 0.3454 0.5730 0.6715 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0293 (4) 0.0182 (4) 0.0181 (4) −0.0032 (3) 0.0024 (3) −0.0003 (3)
N1 0.0273 (5) 0.0194 (4) 0.0149 (4) −0.0021 (3) 0.0018 (3) 0.0002 (3)
N2 0.0249 (4) 0.0182 (4) 0.0193 (4) −0.0005 (3) 0.0038 (3) 0.0006 (3)
C3 0.0188 (5) 0.0190 (5) 0.0189 (5) 0.0015 (4) 0.0045 (4) 0.0008 (4)
C4 0.0188 (5) 0.0189 (5) 0.0166 (5) 0.0006 (4) 0.0036 (4) −0.0002 (4)
C5 0.0199 (5) 0.0205 (5) 0.0164 (5) −0.0012 (4) 0.0038 (4) 0.0008 (4)
N3 0.0310 (5) 0.0173 (4) 0.0199 (4) 0.0032 (4) 0.0042 (4) −0.0004 (3)
N4 0.0190 (4) 0.0179 (4) 0.0172 (4) 0.0019 (3) 0.0042 (3) 0.0012 (3)
N5 0.0237 (4) 0.0178 (4) 0.0155 (4) 0.0001 (3) 0.0028 (3) −0.0002 (3)
C11 0.0170 (4) 0.0228 (5) 0.0170 (5) 0.0015 (4) 0.0039 (4) 0.0034 (4)
C12 0.0216 (5) 0.0225 (5) 0.0246 (5) 0.0002 (4) 0.0049 (4) 0.0016 (4)
C13 0.0229 (5) 0.0262 (6) 0.0316 (6) 0.0021 (4) 0.0071 (4) 0.0107 (4)
C14 0.0239 (5) 0.0384 (7) 0.0220 (5) 0.0025 (5) 0.0040 (4) 0.0111 (5)
C15 0.0272 (5) 0.0360 (6) 0.0175 (5) −0.0002 (5) 0.0034 (4) 0.0008 (4)
C16 0.0238 (5) 0.0242 (5) 0.0188 (5) 0.0006 (4) 0.0045 (4) 0.0010 (4)

Geometric parameters (Å, º)

O1—C5 1.2548 (13) C13—C14 1.3861 (17)
N1—C5 1.3387 (13) C14—C15 1.3890 (17)
N1—N2 1.4242 (12) C15—C16 1.3891 (15)
N2—C3 1.3083 (13) N1—H01 0.909 (16)
C3—N3 1.3637 (13) N3—H03B 0.934 (17)
C3—C4 1.4484 (13) N3—H03A 0.908 (16)
C4—N4 1.3019 (13) N5—H05 0.897 (16)
C4—C5 1.4645 (13) C12—H12 0.9500
N4—N5 1.3134 (12) C13—H13 0.9500
N5—C11 1.4069 (13) C14—H14 0.9500
C11—C12 1.3914 (15) C15—H15 0.9500
C11—C16 1.3918 (15) C16—H16 0.9500
C12—C13 1.3892 (15)
C5—N1—N2 114.23 (8) C14—C15—C16 120.92 (10)
C3—N2—N1 105.00 (8) C15—C16—C11 118.64 (10)
N2—C3—N3 124.94 (9) C5—N1—H01 126.2 (10)
N2—C3—C4 111.62 (9) N2—N1—H01 119.4 (10)
N3—C3—C4 123.43 (9) C3—N3—H03B 114.5 (10)
N4—C4—C3 124.69 (9) C3—N3—H03A 114.0 (9)
N4—C4—C5 130.16 (9) H03B—N3—H03A 115.7 (14)
C3—C4—C5 105.11 (8) N4—N5—H05 120.4 (10)
O1—C5—N1 128.54 (9) C11—N5—H05 119.7 (10)
O1—C5—C4 127.43 (9) C13—C12—H12 120.4
N1—C5—C4 104.03 (9) C11—C12—H12 120.4
C4—N4—N5 118.26 (9) C14—C13—H13 119.8
N4—N5—C11 119.87 (8) C12—C13—H13 119.8
C12—C11—C16 121.13 (9) C13—C14—H14 120.2
C12—C11—N5 118.19 (9) C15—C14—H14 120.2
C16—C11—N5 120.67 (9) C14—C15—H15 119.5
C13—C12—C11 119.21 (10) C16—C15—H15 119.5
C14—C13—C12 120.42 (10) C15—C16—H16 120.7
C13—C14—C15 119.68 (10) C11—C16—H16 120.7
C5—N1—N2—C3 0.65 (12) C3—C4—N4—N5 178.06 (9)
N1—N2—C3—N3 178.81 (9) C5—C4—N4—N5 0.52 (16)
N1—N2—C3—C4 −0.17 (11) C4—N4—N5—C11 179.53 (9)
N2—C3—C4—N4 −178.34 (9) N4—N5—C11—C12 179.30 (8)
N3—C3—C4—N4 2.66 (16) N4—N5—C11—C16 −0.93 (14)
N2—C3—C4—C5 −0.29 (12) C16—C11—C12—C13 −0.62 (15)
N3—C3—C4—C5 −179.29 (9) N5—C11—C12—C13 179.15 (9)
N2—N1—C5—O1 179.27 (9) C11—C12—C13—C14 0.23 (16)
N2—N1—C5—C4 −0.81 (11) C12—C13—C14—C15 0.24 (16)
N4—C4—C5—O1 −1.54 (18) C13—C14—C15—C16 −0.33 (17)
C3—C4—C5—O1 −179.44 (10) C14—C15—C16—C11 −0.05 (16)
N4—C4—C5—N1 178.55 (10) C12—C11—C16—C15 0.53 (15)
C3—C4—C5—N1 0.65 (10) N5—C11—C16—C15 −179.24 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H01···O1i 0.909 (16) 1.949 (16) 2.8521 (11) 172.0 (14)
N3—H03B···N2ii 0.934 (17) 2.424 (16) 3.2711 (12) 150.8 (13)
N3—H03A···O1iii 0.908 (16) 2.141 (15) 2.9635 (11) 150.2 (13)
N3—H03B···N1ii 0.934 (17) 2.674 (16) 3.2562 (13) 121.1 (12)
N5—H05···O1 0.897 (16) 2.174 (16) 2.8575 (11) 132.5 (13)

Symmetry codes: (i) −x, −y+1, −z; (ii) x, −y+3/2, z+1/2; (iii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2105).

References

  1. Elgemeie, G. H. (2003). Curr. Pharm. Des. 9, 2627–2642. [DOI] [PubMed]
  2. Elgemeie, G. H. & El-Aziz, H. A. (2002). Synth. Commun. 32, 253–261.
  3. Elgemeie, G. H., El-Ezbawy, S. R. & El-Aziz, H. A. (2001). Synth. Commun. 31, 3453–3451.
  4. Elgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2007). Synth. Commun. 37, 2827–2834.
  5. Elgemeie, G. H. & Sood, S. A. (2003). Synth. Commun. 33, 2095–2105.
  6. Elgemeie, G. H. & Sood, S. A. (2006). Synth. Commun. 36, 743–753.
  7. Elgemeie, G. H., Zaghary, W. A., Amin, K. M. & Nasr, T. M. (2008). J. Carbohydr. Chem. 27, 345–355.
  8. Elgemeie, G. H., Zaghary, W. A., Amin, K. A. & Nasr, T. M. (2009). J. Carbohydr. Chem. 28, 161–170.
  9. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812050854/gg2105sup1.cif

e-69-0o187-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050854/gg2105Isup3.hkl

e-69-0o187-Isup3.hkl (94.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812050854/gg2105Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES