Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 9;69(Pt 2):o190–o191. doi: 10.1107/S1600536812051975

Ethyl 3-[6-(4-meth­oxy­benzene­sulfon­amido)-2H-indazol-2-yl]propano­ate monohydrate

Najat Abbassi a,*, El Mostapha Rakib a, Abdellah Hannioui a, Mohamed Saadi b, Lahcen El Ammari b
PMCID: PMC3569252  PMID: 23424475

Abstract

In the title compound, C19H21N3O5S·H2O, the central indazole system is essentially planar (r.m.s. deviation = 0.012 Å), while both the benzene ring and the mean plane defined by the non-H atoms of the ethyl propionic ester unit (r.m.s. deviation = 0.087 Å) are nearly perpendicular to the indazole plane, as indicated by the dihedral angles of 82.45 (8) and 75.62 (8)°, respectively. Consequently, the mol­ecule adopts a U-shaped geometry. In the crystal, the water mol­ecule, which is linked to the indazole system by a strong O—H⋯N hydrogen bond, is also involved in two additional N—H⋯O and O—H⋯O inter­actions, which link the organic mol­ecules into chains along the b-axis direction.

Related literature  

For the pharmacological activity of sulfonamides, see: Gadad et al. (2000); Brzozowski et al. (2010); Drew (2000); Garaj et al. (2005). For their anti­proliferative activity see: Abbassi et al. (2012); Bouissane et al. (2006).graphic file with name e-69-0o190-scheme1.jpg

Experimental  

Crystal data  

  • C19H21N3O5S·H2O

  • M r = 421.46

  • Monoclinic, Inline graphic

  • a = 9.0248 (3) Å

  • b = 8.7602 (3) Å

  • c = 13.1792 (4) Å

  • β = 101.062 (2)°

  • V = 1022.58 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.42 × 0.37 × 0.28 mm

Data collection  

  • Bruker X8 APEX diffractometer

  • 10050 measured reflections

  • 4021 independent reflections

  • 3887 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.077

  • S = 1.05

  • 4021 reflections

  • 262 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983), 1779 Friedel pairs

  • Flack parameter: 0.03 (6)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051975/lr2095sup1.cif

e-69-0o190-sup1.cif (28.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051975/lr2095Isup2.hkl

e-69-0o190-Isup2.hkl (197.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051975/lr2095Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯N2 0.86 1.94 2.8029 (19) 176
N1—H1⋯O6i 0.81 1.95 2.7575 (19) 177
O6—H6B⋯O1ii 0.86 2.10 2.9094 (17) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

Sulfonamides constitute an important class of drugs. They possess various types of pharmacological activities such as antibacterial (Gadad et al., 2000), anti-carbonic anhydrase (Brzozowski et al., 2010), hypoglycemic (Drew, 2000), and anticancer activity (Garaj et al., 2005). Recently, our research group has reported the synthesis of some new N-(6(4)-indazolyl)aylsulfonamide derivatives. Some of these compounds showed an important antiproliferative activity against some human and murine cell lines (Abbassi et al., 2012; Bouissane et al., 2006).

The crystal structure of the Ethyl-3-[6-(4-methoxybenzenesulfonamido)-2H- indazol-2-yl]-propanoate monohydrate is built up from two fused five- and six-membered rings (N2 N3 C1 to C7) virtually coplanar, with a maximum deviation of 0.021 (2) A Å for C2 atom as shown in Fig.1. Moreover, the two cycles are nearly perpendicular to the plan through the atoms forming the propionic acid ester group (O3O4 C9 to C11) and to benzene ring (C13 to C18) as indicated by the dihedral angles between them of 75.62 (8)° and 82.45 (8)° respectively. As a matter of fact, the molecule has a U shaped geometry.

The cohesion of the crystal structure is ensured by three classic strong hydrogen bonds between the water and the organic molecules: O6–H6A···N2, N1–H1···O6 and O6–H6B···O1, as shown in Fig.2 and Table 2.

Experimental

A mixture of ethyl 3-(6-nitro-2H-indazol-2-yl)propanoate 1 (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 ml of absolute ethanol was heated at 333 K for 3 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methoxybenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with Ethyl acetate: Hexane 1:9).

Refinement

The structure is solved by direct method technique and refined by full-matrix least-squares using SHELXS97 and SHELXL97 program packages. H atoms were located in a difference map and treated as riding with C–H = 0.96 Å, C–H = 0.97 Å, C–H = 0.93 Å and N–H = 0.86 Å for methyl, methylene, aromatic CH and NH respectively. All hydrogen with Uiso(H) = 1.2 Ueq (aromatic, methylene)and Uiso(H) = 1.5 Ueq for methyl. The space group is not centro symmetric and the polar axis restraint is generated automatically by SHELXL program. The 1779 Friedel opposites reflections are not merged. The atomic displacement parameters of the C12 atom are quite large because it is a termial methyl that vibrates.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Fig. 2.

Fig. 2.

A view of crystal packing showing the water units linking the organic molecules in chains along the b axis.

Crystal data

C19H21N3O5S·H2O F(000) = 444
Mr = 421.46 Dx = 1.369 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: p 2yb Cell parameters from 4021 reflections
a = 9.0248 (3) Å θ = 2.3–26.4°
b = 8.7602 (3) Å µ = 0.20 mm1
c = 13.1792 (4) Å T = 296 K
β = 101.062 (2)° Block, colourless
V = 1022.58 (6) Å3 0.42 × 0.37 × 0.28 mm
Z = 2

Data collection

Bruker X8 APEX diffractometer 3887 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.027
Graphite monochromator θmax = 26.4°, θmin = 2.3°
φ and ω scans h = −11→11
10050 measured reflections k = −10→10
4021 independent reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.037P)2 + 0.2529P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
4021 reflections Δρmax = 0.28 e Å3
262 parameters Δρmin = −0.28 e Å3
1 restraint Absolute structure: Flack (1983), 1779 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.03 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.75199 (19) 0.7888 (2) 0.11333 (12) 0.0197 (4)
C2 0.61152 (18) 0.8667 (2) 0.10899 (12) 0.0216 (3)
H2 0.6095 0.9726 0.1039 0.026*
C3 0.4816 (2) 0.7914 (2) 0.11201 (13) 0.0223 (4)
H3 0.3909 0.8438 0.1071 0.027*
C4 0.48733 (19) 0.6302 (2) 0.12290 (12) 0.0202 (3)
C5 0.62772 (18) 0.5536 (2) 0.12955 (12) 0.0191 (3)
C6 0.76182 (19) 0.6328 (2) 0.12325 (13) 0.0214 (4)
H6 0.8528 0.5817 0.1257 0.026*
C7 0.3845 (2) 0.5150 (2) 0.13056 (13) 0.0215 (4)
H7 0.2815 0.5268 0.1283 0.026*
C8 0.4016 (2) 0.2317 (2) 0.15290 (14) 0.0241 (4)
H8A 0.4322 0.1643 0.1022 0.029*
H8B 0.2921 0.2363 0.1386 0.029*
C9 0.4548 (2) 0.1655 (2) 0.25982 (14) 0.0273 (4)
H9A 0.4299 0.0577 0.2586 0.033*
H9B 0.5638 0.1746 0.2782 0.033*
C10 0.3852 (2) 0.2433 (2) 0.34120 (15) 0.0316 (4)
C11 0.3662 (4) 0.2412 (4) 0.5169 (2) 0.0783 (11)
H11A 0.4110 0.3401 0.5363 0.094*
H11B 0.2581 0.2546 0.4950 0.094*
C12 0.3972 (3) 0.1377 (5) 0.6044 (2) 0.0764 (10)
H12A 0.3521 0.1767 0.6594 0.115*
H12B 0.5043 0.1290 0.6277 0.115*
H12C 0.3556 0.0391 0.5839 0.115*
C13 1.07596 (19) 0.8265 (2) 0.27877 (13) 0.0236 (4)
C14 1.1631 (2) 0.7069 (2) 0.32717 (15) 0.0309 (4)
H14 1.2039 0.6351 0.2884 0.037*
C15 1.1882 (2) 0.6960 (3) 0.43361 (15) 0.0355 (5)
H15 1.2487 0.6179 0.4668 0.043*
C16 1.1239 (2) 0.8006 (2) 0.49155 (15) 0.0304 (4)
C17 1.0371 (3) 0.9201 (3) 0.44266 (16) 0.0367 (5)
H17 0.9944 0.9908 0.4812 0.044*
C18 1.0144 (2) 0.9330 (2) 0.33620 (16) 0.0342 (5)
H18 0.9577 1.0136 0.3031 0.041*
C19 1.0760 (3) 0.8738 (3) 0.65678 (15) 0.0430 (6)
H19A 1.0906 0.8351 0.7261 0.065*
H19B 0.9700 0.8764 0.6276 0.065*
H19C 1.1167 0.9751 0.6576 0.065*
N1 0.87396 (16) 0.88540 (16) 0.10220 (11) 0.0222 (3)
H1 0.8609 0.9762 0.1044 0.027*
N2 0.61166 (17) 0.40098 (17) 0.14153 (11) 0.0224 (3)
N3 0.46167 (16) 0.38390 (16) 0.14178 (10) 0.0202 (3)
O1 1.08832 (15) 0.70535 (16) 0.10224 (10) 0.0269 (3)
O2 1.13045 (15) 0.98256 (17) 0.12154 (11) 0.0315 (3)
O3 0.29906 (17) 0.3482 (2) 0.32659 (11) 0.0450 (4)
O4 0.4297 (2) 0.1772 (2) 0.43247 (11) 0.0520 (5)
O5 1.15167 (18) 0.77637 (19) 0.59538 (11) 0.0411 (4)
O6 0.83323 (15) 0.19739 (15) 0.10176 (10) 0.0297 (3)
H6A 0.7633 0.2565 0.1151 0.036*
H6B 0.8488 0.2280 0.0427 0.036*
S1 1.05094 (4) 0.84904 (5) 0.14406 (3) 0.02171 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0167 (9) 0.0247 (8) 0.0181 (8) 0.0017 (7) 0.0040 (7) −0.0004 (6)
C2 0.0208 (8) 0.0207 (8) 0.0237 (8) 0.0050 (7) 0.0055 (6) 0.0004 (7)
C3 0.0171 (9) 0.0250 (8) 0.0257 (9) 0.0078 (7) 0.0061 (7) 0.0006 (7)
C4 0.0192 (9) 0.0241 (9) 0.0173 (8) 0.0040 (7) 0.0038 (7) 0.0000 (6)
C5 0.0181 (8) 0.0219 (8) 0.0166 (8) 0.0047 (7) 0.0015 (6) 0.0002 (6)
C6 0.0157 (8) 0.0243 (9) 0.0243 (9) 0.0078 (7) 0.0044 (7) 0.0019 (7)
C7 0.0192 (9) 0.0253 (9) 0.0202 (8) 0.0051 (7) 0.0044 (7) −0.0011 (7)
C8 0.0209 (9) 0.0225 (9) 0.0287 (9) −0.0006 (7) 0.0043 (7) −0.0027 (7)
C9 0.0273 (10) 0.0234 (9) 0.0319 (10) 0.0020 (7) 0.0073 (8) 0.0031 (7)
C10 0.0330 (11) 0.0330 (10) 0.0309 (10) 0.0010 (9) 0.0112 (8) 0.0053 (8)
C11 0.110 (3) 0.097 (2) 0.0363 (14) 0.036 (2) 0.0350 (16) 0.0102 (15)
C12 0.0642 (19) 0.129 (3) 0.0388 (14) −0.015 (2) 0.0174 (13) 0.0096 (17)
C13 0.0187 (8) 0.0259 (9) 0.0256 (8) −0.0004 (7) 0.0026 (7) −0.0019 (7)
C14 0.0290 (11) 0.0319 (10) 0.0319 (10) 0.0091 (8) 0.0062 (8) 0.0010 (8)
C15 0.0344 (11) 0.0375 (11) 0.0334 (10) 0.0094 (9) 0.0033 (9) 0.0082 (9)
C16 0.0251 (10) 0.0354 (10) 0.0289 (10) −0.0046 (7) 0.0010 (8) 0.0003 (7)
C17 0.0404 (12) 0.0377 (11) 0.0321 (10) 0.0088 (9) 0.0072 (9) −0.0068 (8)
C18 0.0362 (12) 0.0331 (10) 0.0319 (10) 0.0124 (9) 0.0028 (9) −0.0011 (8)
C19 0.0374 (12) 0.0635 (17) 0.0277 (10) −0.0016 (11) 0.0051 (8) −0.0046 (10)
N1 0.0180 (8) 0.0188 (7) 0.0298 (7) 0.0047 (5) 0.0047 (6) 0.0040 (6)
N2 0.0190 (8) 0.0228 (7) 0.0259 (7) 0.0033 (6) 0.0053 (6) 0.0013 (6)
N3 0.0178 (7) 0.0217 (8) 0.0209 (7) 0.0018 (6) 0.0033 (5) 0.0001 (5)
O1 0.0208 (7) 0.0314 (7) 0.0300 (7) 0.0056 (6) 0.0084 (5) −0.0007 (6)
O2 0.0203 (7) 0.0324 (7) 0.0438 (8) −0.0005 (6) 0.0114 (6) 0.0073 (6)
O3 0.0536 (9) 0.0433 (8) 0.0434 (8) 0.0182 (9) 0.0227 (7) 0.0073 (8)
O4 0.0646 (11) 0.0640 (11) 0.0303 (8) 0.0236 (9) 0.0165 (8) 0.0126 (7)
O5 0.0444 (9) 0.0506 (9) 0.0262 (8) 0.0047 (7) 0.0020 (6) 0.0013 (6)
O6 0.0334 (8) 0.0249 (7) 0.0335 (7) 0.0082 (6) 0.0133 (6) 0.0030 (5)
S1 0.0152 (2) 0.0246 (2) 0.0263 (2) 0.00303 (17) 0.00648 (15) 0.00187 (18)

Geometric parameters (Å, º)

C1—C6 1.374 (2) C12—H12A 0.9600
C1—N1 1.418 (2) C12—H12B 0.9600
C1—C2 1.431 (2) C12—H12C 0.9600
C2—C3 1.353 (3) C13—C18 1.383 (2)
C2—H2 0.9300 C13—C14 1.390 (3)
C3—C4 1.419 (2) C13—S1 1.7572 (17)
C3—H3 0.9300 C14—C15 1.381 (3)
C4—C7 1.387 (2) C14—H14 0.9300
C4—C5 1.422 (2) C15—C16 1.389 (3)
C5—N2 1.357 (2) C15—H15 0.9300
C5—C6 1.411 (2) C16—O5 1.360 (2)
C6—H6 0.9300 C16—C17 1.390 (3)
C7—N3 1.337 (2) C17—C18 1.383 (3)
C7—H7 0.9300 C17—H17 0.9300
C8—N3 1.458 (2) C18—H18 0.9300
C8—C9 1.514 (3) C19—O5 1.436 (3)
C8—H8A 0.9700 C19—H19A 0.9600
C8—H8B 0.9700 C19—H19B 0.9600
C9—C10 1.506 (3) C19—H19C 0.9600
C9—H9A 0.9700 N1—S1 1.6183 (14)
C9—H9B 0.9700 N1—H1 0.8050
C10—O3 1.196 (3) N2—N3 1.363 (2)
C10—O4 1.326 (2) O1—S1 1.4399 (14)
C11—C12 1.451 (4) O2—S1 1.4327 (14)
C11—O4 1.458 (3) O6—H6A 0.8601
C11—H11A 0.9700 O6—H6B 0.8600
C11—H11B 0.9700
C6—C1—N1 124.49 (16) H12A—C12—H12B 109.5
C6—C1—C2 121.23 (17) C11—C12—H12C 109.5
N1—C1—C2 114.23 (15) H12A—C12—H12C 109.5
C3—C2—C1 122.16 (17) H12B—C12—H12C 109.5
C3—C2—H2 118.9 C18—C13—C14 120.58 (17)
C1—C2—H2 118.9 C18—C13—S1 119.33 (14)
C2—C3—C4 118.27 (17) C14—C13—S1 120.01 (14)
C2—C3—H3 120.9 C15—C14—C13 119.13 (18)
C4—C3—H3 120.9 C15—C14—H14 120.4
C7—C4—C3 135.97 (17) C13—C14—H14 120.4
C7—C4—C5 104.64 (15) C14—C15—C16 120.55 (19)
C3—C4—C5 119.38 (16) C14—C15—H15 119.7
N2—C5—C6 127.09 (15) C16—C15—H15 119.7
N2—C5—C4 111.00 (15) O5—C16—C15 115.76 (18)
C6—C5—C4 121.91 (16) O5—C16—C17 124.24 (18)
C1—C6—C5 117.01 (16) C15—C16—C17 120.01 (18)
C1—C6—H6 121.5 C18—C17—C16 119.51 (18)
C5—C6—H6 121.5 C18—C17—H17 120.2
N3—C7—C4 106.95 (15) C16—C17—H17 120.2
N3—C7—H7 126.5 C17—C18—C13 120.20 (18)
C4—C7—H7 126.5 C17—C18—H18 119.9
N3—C8—C9 112.72 (15) C13—C18—H18 119.9
N3—C8—H8A 109.0 O5—C19—H19A 109.5
C9—C8—H8A 109.0 O5—C19—H19B 109.5
N3—C8—H8B 109.0 H19A—C19—H19B 109.5
C9—C8—H8B 109.0 O5—C19—H19C 109.5
H8A—C8—H8B 107.8 H19A—C19—H19C 109.5
C10—C9—C8 112.84 (16) H19B—C19—H19C 109.5
C10—C9—H9A 109.0 C1—N1—S1 125.60 (12)
C8—C9—H9A 109.0 C1—N1—H1 117.6
C10—C9—H9B 109.0 S1—N1—H1 108.9
C8—C9—H9B 109.0 C5—N2—N3 103.70 (13)
H9A—C9—H9B 107.8 C7—N3—N2 113.70 (14)
O3—C10—O4 123.80 (19) C7—N3—C8 126.97 (15)
O3—C10—C9 125.49 (18) N2—N3—C8 119.33 (14)
O4—C10—C9 110.70 (17) C10—O4—C11 115.4 (2)
C12—C11—O4 108.8 (3) C16—O5—C19 117.30 (17)
C12—C11—H11A 109.9 H6A—O6—H6B 104.5
O4—C11—H11A 109.9 O2—S1—O1 118.09 (7)
C12—C11—H11B 109.9 O2—S1—N1 105.63 (8)
O4—C11—H11B 109.9 O1—S1—N1 109.27 (8)
H11A—C11—H11B 108.3 O2—S1—C13 109.18 (9)
C11—C12—H12A 109.5 O1—S1—C13 107.13 (8)
C11—C12—H12B 109.5 N1—S1—C13 107.07 (8)
C6—C1—C2—C3 −1.5 (3) C14—C13—C18—C17 −1.1 (3)
N1—C1—C2—C3 175.96 (15) S1—C13—C18—C17 −177.88 (17)
C1—C2—C3—C4 1.9 (3) C6—C1—N1—S1 −26.6 (2)
C2—C3—C4—C7 178.80 (18) C2—C1—N1—S1 155.99 (12)
C2—C3—C4—C5 −0.4 (3) C6—C5—N2—N3 −179.35 (15)
C7—C4—C5—N2 −0.54 (19) C4—C5—N2—N3 0.25 (18)
C3—C4—C5—N2 178.89 (15) C4—C7—N3—N2 −0.50 (19)
C7—C4—C5—C6 179.08 (15) C4—C7—N3—C8 179.99 (15)
C3—C4—C5—C6 −1.5 (2) C5—N2—N3—C7 0.16 (18)
N1—C1—C6—C5 −177.59 (14) C5—N2—N3—C8 179.70 (14)
C2—C1—C6—C5 −0.4 (2) C9—C8—N3—C7 −111.10 (19)
N2—C5—C6—C1 −178.61 (17) C9—C8—N3—N2 69.41 (19)
C4—C5—C6—C1 1.8 (2) O3—C10—O4—C11 0.0 (4)
C3—C4—C7—N3 −178.7 (2) C9—C10—O4—C11 −178.6 (2)
C5—C4—C7—N3 0.61 (18) C12—C11—O4—C10 167.3 (3)
N3—C8—C9—C10 70.9 (2) C15—C16—O5—C19 −174.48 (19)
C8—C9—C10—O3 −1.3 (3) C17—C16—O5—C19 5.2 (3)
C8—C9—C10—O4 177.17 (17) C1—N1—S1—O2 −176.12 (14)
C18—C13—C14—C15 −0.3 (3) C1—N1—S1—O1 55.87 (16)
S1—C13—C14—C15 176.48 (16) C1—N1—S1—C13 −59.84 (16)
C13—C14—C15—C16 1.8 (3) C18—C13—S1—O2 66.47 (17)
C14—C15—C16—O5 177.83 (19) C14—C13—S1—O2 −110.37 (16)
C14—C15—C16—C17 −1.9 (3) C18—C13—S1—O1 −164.56 (15)
O5—C16—C17—C18 −179.2 (2) C14—C13—S1—O1 18.60 (18)
C15—C16—C17—C18 0.5 (3) C18—C13—S1—N1 −47.44 (18)
C16—C17—C18—C13 1.0 (3) C14—C13—S1—N1 135.72 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O6—H6A···N2 0.86 1.94 2.8029 (19) 176
N1—H1···O6i 0.81 1.95 2.7575 (19) 177
O6—H6B···O1ii 0.86 2.10 2.9094 (17) 156

Symmetry codes: (i) x, y+1, z; (ii) −x+2, y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2095).

References

  1. Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249. [DOI] [PubMed]
  2. Bouissane, L., El Kazzouli, S., Léonce, S., Pffeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088. [DOI] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Brzozowski, Z., S1awinski, J., Saczewski, F., Innocenti, A. & Supuran, C. T. (2010). Eur. J. Med. Chem. 45, 2396–2404. [DOI] [PubMed]
  5. Drew, J. (2000). Science, 287, 1960–964.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Gadad, A. K., Mahajanshetti, C. S., Nimbalkar, S. & Raichurkar, A. (2000). Eur. J. Med. Chem. 35, 853–857. [DOI] [PubMed]
  9. Garaj, V., Puccetti, L., Fasolis, G., Winum, J. Y., Montero, J. L., Scozzafava, A., Vullo, D., Innocenti, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett. 15, 3102–3108. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051975/lr2095sup1.cif

e-69-0o190-sup1.cif (28.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051975/lr2095Isup2.hkl

e-69-0o190-Isup2.hkl (197.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051975/lr2095Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES