Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 9;69(Pt 2):o192. doi: 10.1107/S1600536812051847

(6-Meth­oxy-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodithio­ate

H C Devarajegowda a,*, K Mahesh Kumar b, S Seenivasa c, H K Arunkashi a, O Kotresh b
PMCID: PMC3569253  PMID: 23424476

Abstract

In the title compound, C16H17NO4S2, the 2H-chromene ring system is nearly planar, with a maximum deviation of 0.070 (1) Å, and the morpholine ring adopts a chair conformation; the bond-angle sum for its N atom is 357.9°. The dihedral angle between the the 2H-chromene ring and the best plane through the morpholine ring is 89.09 (6)°. An intra­molecular C—H⋯S hydrogen bond occurs. In the crystal, C—H⋯O hydrogen bonds generate R 2 2(8) rings and π–π inter­actions occur between fused benzene rings of the chromene system [shortest centroid–centroid distance = 3.5487 (8) Å].

Related literature  

For a related structure, background to coumarins and details of the synthesis of the title compound, see: Kumar et al. (2012).graphic file with name e-69-0o192-scheme1.jpg

Experimental  

Crystal data  

  • C16H17NO4S2

  • M r = 351.43

  • Triclinic, Inline graphic

  • a = 7.0026 (5) Å

  • b = 7.9939 (6) Å

  • c = 14.8033 (11) Å

  • α = 75.433 (4)°

  • β = 86.642 (4)°

  • γ = 78.355 (4)°

  • V = 785.49 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.770, T max = 1.000

  • 13583 measured reflections

  • 2725 independent reflections

  • 2482 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.073

  • S = 1.06

  • 2725 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051847/gw2129sup1.cif

e-69-0o192-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051847/gw2129Isup2.hkl

e-69-0o192-Isup2.hkl (131KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051847/gw2129Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O6i 0.93 2.55 3.4582 (19) 166
C17—H17B⋯O3ii 0.96 2.57 3.386 (2) 143
C18—H18B⋯S2 0.97 2.55 3.1527 (14) 120

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the CCD X-ray facilities, X-ray data collection, GCMS, IR, CHNS and NMR data. KMK is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities.

supplementary crystallographic information

Comment

As part of our ongoing studies of coumarins (or 2H-chromen-2-ones) with possible biological activities (Kumar et al., 2012), we now describe the structure of (6-methoxy-2-oxo-2H-chromen-4-yl) methyl morpholine-4-carbodithioate.

The asymmetric unit of (6-methoxy-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodithioate is shown in Fig. 1. The 2H-chromene ring system (O3/C8–C16) is essentially planar, with a maximum deviation of 0.070 (1) Å for atom C8 and the morpholine ring adopts a chair conformation: the bond-angle sum for its N7 atom is 357.9 Å. The dihedral angle between the 2H-chromene (O3/C8–C16) ring and the morpholine (N7/O5/C20–C23) ring is 89.09 (6)°. In the crystal structure, (Fig. 2), intermolecular C14—H14···O6 and C17B—H17B···O3 and intramolecular C18—H18B···S2 hydrogen bonds observed and also π–π interactions between fused benzene Cg(3) (C11–C16) rings of chromene [shortest centroid–centroid distance = 3.5487 (8) Å] further stabilize the crystal packing

Experimental

This compound was prepared according to the reported method (Kumar et al., 2012). Colourless needles of the title compound were grown from a mixed solution of EtOH / CHCl3(V/V = 1/1) by slow evaporation at room temperature. Colour: yellowish. Yield= 84%, m.p.481 K.

Refinement

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H and C—H = 0.96 Å for methyl H,and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The packing of molecules.

Crystal data

C16H17NO4S2 Z = 2
Mr = 351.43 F(000) = 368
Triclinic, P1 Dx = 1.486 Mg m3
Hall symbol: -P 1 Melting point: 481 K
a = 7.0026 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.9939 (6) Å Cell parameters from 2725 reflections
c = 14.8033 (11) Å θ = 2.7–25.0°
α = 75.433 (4)° µ = 0.36 mm1
β = 86.642 (4)° T = 296 K
γ = 78.355 (4)° Plate, colourless
V = 785.49 (10) Å3 0.24 × 0.20 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2725 independent reflections
Radiation source: fine-focus sealed tube 2482 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
ω and φ scans θmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) h = −8→8
Tmin = 0.770, Tmax = 1.000 k = −9→9
13583 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.1479P] where P = (Fo2 + 2Fc2)/3
2725 reflections (Δ/σ)max = 0.001
208 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Experimental. IR (KBr): 662 cm-1(C—S), 1233 cm-11 (C=S), 1032 cm-1(C—O), 842 cm-1 (C—N),1118 cm-1(C—O—C), 1703 cm-1(C=O). GCMS: m/e: 335. 1H NMR (400 MHz, CDCl3, \?, p.p.m.) 1.91 (m, 6H, Morpholine-CH2), 2.34 (s, 4H, Morpholine –CH2), 4.63 (d, 2H, Methylene-CH2),5.88(s, 1H, Ar—H), 6.39 (s, 1H, Ar—H), 7.08 (s, 1H, Ar—H), 7.12 (s, 1H, Ar—H). Elemental analysis for C16H17NO3S2: C, 57.21; H, 5.04; N, 4.11.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.20243 (5) 0.57411 (5) 0.13634 (2) 0.03769 (12)
S2 0.56769 (5) 0.71727 (6) 0.06898 (3) 0.04523 (13)
O3 0.11086 (15) 0.92127 (12) 0.39849 (7) 0.0387 (2)
O4 0.3416 (2) 1.06890 (16) 0.34092 (10) 0.0637 (3)
O5 0.05206 (16) 0.92565 (15) −0.20255 (7) 0.0481 (3)
O6 −0.32490 (16) 0.41563 (13) 0.41094 (8) 0.0478 (3)
N7 0.25269 (16) 0.75947 (14) −0.03248 (8) 0.0338 (3)
C8 0.2732 (2) 0.94051 (19) 0.34374 (10) 0.0423 (3)
C9 0.3469 (2) 0.80463 (19) 0.29565 (10) 0.0391 (3)
H9 0.4639 0.8085 0.2627 0.047*
C10 0.2545 (2) 0.67253 (17) 0.29619 (9) 0.0316 (3)
C11 0.0733 (2) 0.66496 (16) 0.34768 (8) 0.0302 (3)
C12 0.0084 (2) 0.79116 (16) 0.39807 (9) 0.0322 (3)
C13 −0.1612 (2) 0.79099 (18) 0.45089 (9) 0.0380 (3)
H13 −0.2017 0.8758 0.4846 0.046*
C14 −0.2691 (2) 0.66436 (19) 0.45309 (10) 0.0396 (3)
H14 −0.3836 0.6639 0.4882 0.047*
C15 −0.2080 (2) 0.53636 (17) 0.40304 (9) 0.0355 (3)
C16 −0.0384 (2) 0.53634 (17) 0.35082 (9) 0.0336 (3)
H16 0.0020 0.4508 0.3176 0.040*
C17 −0.2599 (2) 0.2748 (2) 0.36796 (13) 0.0518 (4)
H17A −0.3539 0.1994 0.3787 0.078*
H17B −0.1370 0.2086 0.3939 0.078*
H17C −0.2448 0.3208 0.3020 0.078*
C18 0.3358 (2) 0.53685 (18) 0.24300 (9) 0.0353 (3)
H18A 0.3293 0.4206 0.2818 0.042*
H18B 0.4718 0.5408 0.2280 0.042*
C19 0.34447 (19) 0.69401 (16) 0.04920 (9) 0.0311 (3)
C20 0.0686 (2) 0.71676 (19) −0.05329 (10) 0.0407 (3)
H20A −0.0043 0.6857 0.0042 0.049*
H20B 0.0962 0.6156 −0.0802 0.049*
C21 −0.0524 (2) 0.8689 (2) −0.11983 (11) 0.0441 (4)
H21A −0.1690 0.8341 −0.1351 0.053*
H21B −0.0923 0.9658 −0.0901 0.053*
C22 0.2181 (2) 0.9831 (2) −0.18091 (11) 0.0497 (4)
H22A 0.1762 1.0806 −0.1518 0.060*
H22B 0.2864 1.0260 −0.2383 0.060*
C23 0.3561 (2) 0.8398 (2) −0.11672 (10) 0.0430 (3)
H23A 0.4142 0.7502 −0.1491 0.052*
H23B 0.4600 0.8887 −0.0989 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0381 (2) 0.0462 (2) 0.0334 (2) −0.01826 (16) 0.00258 (14) −0.01081 (15)
S2 0.0298 (2) 0.0622 (3) 0.0451 (2) −0.01602 (17) −0.00144 (16) −0.00997 (18)
O3 0.0470 (6) 0.0347 (5) 0.0383 (5) −0.0103 (4) −0.0010 (4) −0.0142 (4)
O4 0.0665 (8) 0.0560 (7) 0.0859 (9) −0.0322 (6) 0.0105 (7) −0.0352 (6)
O5 0.0433 (6) 0.0585 (7) 0.0405 (6) −0.0172 (5) −0.0066 (5) −0.0014 (5)
O6 0.0432 (6) 0.0412 (6) 0.0627 (7) −0.0158 (5) 0.0115 (5) −0.0164 (5)
N7 0.0285 (6) 0.0383 (6) 0.0351 (6) −0.0111 (5) 0.0005 (5) −0.0066 (5)
C8 0.0440 (9) 0.0426 (8) 0.0438 (8) −0.0140 (7) −0.0039 (7) −0.0118 (6)
C9 0.0347 (8) 0.0430 (8) 0.0414 (8) −0.0098 (6) 0.0002 (6) −0.0118 (6)
C10 0.0328 (7) 0.0316 (6) 0.0278 (6) −0.0024 (5) −0.0047 (5) −0.0045 (5)
C11 0.0343 (7) 0.0283 (6) 0.0254 (6) −0.0030 (5) −0.0039 (5) −0.0032 (5)
C12 0.0397 (8) 0.0283 (6) 0.0274 (6) −0.0052 (6) −0.0052 (6) −0.0044 (5)
C13 0.0457 (9) 0.0344 (7) 0.0323 (7) −0.0020 (6) 0.0026 (6) −0.0107 (6)
C14 0.0400 (8) 0.0397 (7) 0.0356 (7) −0.0049 (6) 0.0065 (6) −0.0067 (6)
C15 0.0372 (8) 0.0307 (7) 0.0361 (7) −0.0076 (6) −0.0006 (6) −0.0029 (5)
C16 0.0397 (8) 0.0279 (6) 0.0331 (7) −0.0042 (6) 0.0001 (6) −0.0090 (5)
C17 0.0464 (9) 0.0387 (8) 0.0733 (11) −0.0102 (7) −0.0034 (8) −0.0174 (8)
C18 0.0342 (7) 0.0351 (7) 0.0344 (7) −0.0033 (6) −0.0012 (6) −0.0072 (5)
C19 0.0292 (7) 0.0295 (6) 0.0366 (7) −0.0051 (5) 0.0034 (5) −0.0127 (5)
C20 0.0337 (8) 0.0456 (8) 0.0436 (8) −0.0170 (6) −0.0039 (6) −0.0041 (6)
C21 0.0327 (8) 0.0516 (9) 0.0454 (8) −0.0084 (7) −0.0024 (6) −0.0068 (7)
C22 0.0481 (10) 0.0533 (9) 0.0456 (9) −0.0225 (8) −0.0038 (7) 0.0023 (7)
C23 0.0342 (8) 0.0559 (9) 0.0381 (8) −0.0149 (7) 0.0036 (6) −0.0061 (7)

Geometric parameters (Å, º)

S1—C19 1.7846 (13) C13—C14 1.373 (2)
S1—C18 1.8107 (14) C13—H13 0.9300
S2—C19 1.6620 (14) C14—C15 1.395 (2)
O3—C8 1.3682 (18) C14—H14 0.9300
O3—C12 1.3792 (16) C15—C16 1.378 (2)
O4—C8 1.2083 (18) C16—H16 0.9300
O5—C21 1.4105 (19) C17—H17A 0.9600
O5—C22 1.4136 (19) C17—H17B 0.9600
O6—C15 1.3661 (17) C17—H17C 0.9600
O6—C17 1.4134 (19) C18—H18A 0.9700
N7—C19 1.3363 (17) C18—H18B 0.9700
N7—C20 1.4662 (18) C20—C21 1.499 (2)
N7—C23 1.4733 (18) C20—H20A 0.9700
C8—C9 1.440 (2) C20—H20B 0.9700
C9—C10 1.344 (2) C21—H21A 0.9700
C9—H9 0.9300 C21—H21B 0.9700
C10—C11 1.4453 (19) C22—C23 1.504 (2)
C10—C18 1.4995 (18) C22—H22A 0.9700
C11—C12 1.3909 (19) C22—H22B 0.9700
C11—C16 1.4028 (19) C23—H23A 0.9700
C12—C13 1.383 (2) C23—H23B 0.9700
C19—S1—C18 103.85 (6) O6—C17—H17C 109.5
C8—O3—C12 121.50 (11) H17A—C17—H17C 109.5
C21—O5—C22 109.50 (12) H17B—C17—H17C 109.5
C15—O6—C17 117.51 (12) C10—C18—S1 111.36 (9)
C19—N7—C20 124.03 (11) C10—C18—H18A 109.4
C19—N7—C23 120.79 (12) S1—C18—H18A 109.4
C20—N7—C23 113.08 (11) C10—C18—H18B 109.4
O4—C8—O3 117.00 (14) S1—C18—H18B 109.4
O4—C8—C9 126.27 (15) H18A—C18—H18B 108.0
O3—C8—C9 116.73 (12) N7—C19—S2 124.57 (10)
C10—C9—C8 122.97 (14) N7—C19—S1 112.68 (10)
C10—C9—H9 118.5 S2—C19—S1 122.74 (8)
C8—C9—H9 118.5 N7—C20—C21 111.40 (12)
C9—C10—C11 118.87 (13) N7—C20—H20A 109.3
C9—C10—C18 120.67 (13) C21—C20—H20A 109.3
C11—C10—C18 120.46 (12) N7—C20—H20B 109.3
C12—C11—C16 118.41 (13) C21—C20—H20B 109.3
C12—C11—C10 117.82 (12) H20A—C20—H20B 108.0
C16—C11—C10 123.77 (12) O5—C21—C20 111.41 (12)
O3—C12—C13 116.84 (12) O5—C21—H21A 109.3
O3—C12—C11 121.63 (12) C20—C21—H21A 109.3
C13—C12—C11 121.52 (13) O5—C21—H21B 109.3
C14—C13—C12 119.35 (13) C20—C21—H21B 109.3
C14—C13—H13 120.3 H21A—C21—H21B 108.0
C12—C13—H13 120.3 O5—C22—C23 112.76 (13)
C13—C14—C15 120.46 (13) O5—C22—H22A 109.0
C13—C14—H14 119.8 C23—C22—H22A 109.0
C15—C14—H14 119.8 O5—C22—H22B 109.0
O6—C15—C16 124.29 (13) C23—C22—H22B 109.0
O6—C15—C14 115.64 (13) H22A—C22—H22B 107.8
C16—C15—C14 120.07 (13) N7—C23—C22 110.63 (12)
C15—C16—C11 120.20 (12) N7—C23—H23A 109.5
C15—C16—H16 119.9 C22—C23—H23A 109.5
C11—C16—H16 119.9 N7—C23—H23B 109.5
O6—C17—H17A 109.5 C22—C23—H23B 109.5
O6—C17—H17B 109.5 H23A—C23—H23B 108.1
H17A—C17—H17B 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14···O6i 0.93 2.55 3.4582 (19) 166
C17—H17B···O3ii 0.96 2.57 3.386 (2) 143
C18—H18B···S2 0.97 2.55 3.1527 (14) 120

Symmetry codes: (i) −x−1, −y+1, −z+1; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2129).

References

  1. Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Kumar, K. M., Kour, D., Kapoor, K., Mahabaleshwaraiah, N. M., Kotresh, O., Gupta, V. K. & Kant, R. (2012). Acta Cryst. E68, o878–o879. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051847/gw2129sup1.cif

e-69-0o192-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051847/gw2129Isup2.hkl

e-69-0o192-Isup2.hkl (131KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051847/gw2129Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES