Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 9;69(Pt 2):o195. doi: 10.1107/S1600536812050398

P,P-Bis[4-(dimethyl­amino)­phen­yl]-N,N-bis­(propan-2-yl)phosphinic amide

Stephen J Evans a, C Alicia Renison a, D Bradley G Williams a,*,, Alfred Muller a
PMCID: PMC3569256  PMID: 23424479

Abstract

The mol­ecular structure of the title compound, C22H34N3OP, adopts a distorted tetra­hedral geometry at the P atom, with the most noticeable distortion being for the O—P—N angle [117.53 (10)°]. An effective cone angle of 187° was calculated for the compound. In the crystal, weak C—H⋯O inter­actions create infinite chains along [100], whereas C—H⋯π inter­actions propagating in [001] generate a herringbone motif.

Related literature  

For the synthesis of ligands derived from phosphinic amides, see: Williams et al. (2009). For background to DoM technology, see: Snieckus (1990). For cone angles, see: Tolman (1977); Otto (2001).graphic file with name e-69-0o195-scheme1.jpg

Experimental  

Crystal data  

  • C22H34N3OP

  • M r = 387.49

  • Orthorhombic, Inline graphic

  • a = 6.2960 (4) Å

  • b = 16.6389 (8) Å

  • c = 19.9475 (11) Å

  • V = 2089.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 100 K

  • 0.13 × 0.11 × 0.1 mm

Data collection  

  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.981, T max = 0.985

  • 18896 measured reflections

  • 5212 independent reflections

  • 3840 reflections with I > 2σ(I)

  • R int = 0.074

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.110

  • S = 1.04

  • 5212 reflections

  • 252 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983), 2224 Friedel pairs

  • Flack parameter: 0.11 (10)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812050398/bt6869sup1.cif

e-69-0o195-sup1.cif (30KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050398/bt6869Isup2.hkl

e-69-0o195-Isup2.hkl (250.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812050398/bt6869Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C11—C16 and C21—C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.95 2.59 3.493 (3) 159
C33—H33A⋯O1i 0.98 2.58 3.501 (3) 158
C18—H18ACg1ii 0.98 2.96 3.821 (2) 148
C18—H18CCg2ii 0.98 2.97 3.915 (3) 162
C27—H27CCg1iii 0.98 2.69 3.468 (3) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The University of the Free State is thanked for the use of their diffractometer. Financial assistance from Sasol, THRIP and the Research Fund of the University of Johannesburg is gratefully acknowledged.

supplementary crystallographic information

Comment

An expedient rapid synthesis of ligands derived from phosphinic amides that were found to be suitable for the Suzuki-Miyaura reactions at low palladium catalyst loadings was developed (Williams et al., 2009). The brief practical synthesis affords arylphosphine ligands resistant to oxidation and hydrolysis while maintaining high catalyst activity. The synthesis rests strongly on DoM technology (Snieckus, 1990) making use of a directing group that is highly underrepresented in this type of chemistry. We envisioned that the use of phosphinic amides as directing groups, together with phosphinous chloride (Cy2PCl) electrophiles would allow the synthesis of sterically hindered phosphines that are stable to hydrolysis and oxidation. Manipulating the phosphinic amide functionality has been shown to influence the catalytic performance of the resulting alkyl phosphine ligands and the structure reported here is one of the substrates for further ligand studies.

The title compound (see Fig. 1) crystallizes in the orthorhombic space group P212121 (Z=4) with its molecules adopting a distorted tetrahedral arrangement about the phosphorus atom. The O3—P1—N3 angle of 117.53 (10)° shows this distorted arrangement the most prominent, and it is further exemplified by the twisted orientation of the bulky amide substituent to fit into the coordination sphere of the phosphorus atom (seen from the torsion angles C34—N3—P1—O1 = -63.71 (19)° and C31—N3—P1—O1 = 87.2 (2)° respectively). The most common method used for determining the steric behaviour of a phosphane ligand is the Tolman cone angle (Tolman, 1977). We used the geometry from the title compound and adjusted the P═O distance to 2.28 Å (the average Ni—P distance used in the original Tolman model) to cancel the bias this may have on the calculated cone angle value. In this way we obtain the effective cone angle (Otto, 2001) value of 187°. Several weak C—H···O interactions are observed in the crystal lattice creating infinitely long chains along the [100] direction (Fig. 2). Additional C—H···π interactions are also observed which propagates along the [001] direction in the crystal lattice (Fig. 3). These interactions (summarized in Table 1) generate a herring-bone packing motif (Fig. 4).

Experimental

Diisopropyl amine (1.55 ml, 5.53 mmol) was added to a solution of PCl3 (241 µL, 2.77 mmol) in toluene (250 ml) at 0 °C. The mixture was allowed to stir for 2 h at room temperature. In a separate flask p-bromo-N,N-dimethylaniline (1.728 g, 8.63 mmol) in THF (5 ml) was added to magnesium turnings (200 mg, 8.22 mmol) in THF (5 ml) and heated to 65 °C. The reaction was initiated with a crystal of iodine and the suspension allowed to stir for 3 h at that temperature. Once the magnesium had fully reacted the two solutions were combined and the salts were removed by filtration through a pad of celite under argon.

The solution was cooled to 0 °C and hydrogen peroxide (30%, 15 ml) was added over 20 minutes. The mixture was allowed to stir for a further 1 h. The product was extracted with EtOAc and H2O and the solvent removed in vacuo. The product was isolated by flash column chromatography (EtOAc).

Crystals were grown by dissolving in a minimal amount of DCM and layering an excess of hexane on top and allowing to stand in a refrigerator until the crystals were formed.

Yield: 60% (yellow solid). 1H NMR: (300 MHz, CDCl3) δH 7.58 (t, 4H, H2, H2`, H6 and H6`, J = 9.9 Hz), 6.61 (d, 4H, H3, H3`, H5 and H5`, J = 7.2 Hz), 3.41 (sept, 2H, NCH(CH3)2, J = 6.9 Hz), 2.90 (s, 12H, NCH(CH3)2), 1.12 (d, 12H, NCH(CH3)2, J = 6.9 Hz). 13C NMR: (75 MHz, CDCl3) δC 151.6 (d, 2 C, C4 and C4`, J = 2.3 Hz), 133.4 (d, 4 C, C2, C2`, C6 and C6`, J = 10.6 Hz), 120.3 (d, 2 C, C1 and C1`, J = 135.3 Hz), 110.7 (d, 4 C, C3, C3`, C5 and C5`, J = 13.0 Hz), 46.5 (d, 2 C. NCH(CH3), J = 4.3 Hz), 398 (s, 4 C, NCH(CH3)2, 32.1 (d, 4 C, NCH(CH3)2, J = 2.6 Hz). 31P NMR: (121 MHz, CDCl3) δP 31.1(S,1P). ElMS: m/z 387 [(M), 10%], 344 [(M—C3H7), 12%], 287 [(M—C6H14N), 100%]. IR: ν (CHCl3) 2980, 1262, 1172. HRMS: Calculated: 387.2440 C22H34N3OP Obtained: 387.2445

Refinement

The aromatic, methine and methyl atoms were placed in geometrically idealized positions (C—H = 0.95–1.0 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for the aromatic and methine H and Uiso(H) = 1.5Ueq(C) for the methyl H respectively. The Flack parameter refined to 0.11 (10).

Figures

Fig. 1.

Fig. 1.

A view of the title complex, showing the atom-numbering scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram showing only the C—H···O interactions (indicated by dashed lines) creating infinitely long chains along the [100] direction.

Fig. 3.

Fig. 3.

Packing diagram showing only the C—H···π interactions (indicated by dashed lines) propagating along the [001] direction.

Fig. 4.

Fig. 4.

Packing diagram showing the generated herring-bone motif from the interactions.

Crystal data

C22H34N3OP F(000) = 840
Mr = 387.49 Dx = 1.232 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3113 reflections
a = 6.2960 (4) Å θ = 2.4–25.9°
b = 16.6389 (8) Å µ = 0.15 mm1
c = 19.9475 (11) Å T = 100 K
V = 2089.7 (2) Å3 Prism, colourless
Z = 4 0.13 × 0.11 × 0.1 mm

Data collection

Bruker X8 APEXII 4K KappaCCD diffractometer 3840 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.074
φ and ω scans θmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −4→8
Tmin = 0.981, Tmax = 0.985 k = −19→22
18896 measured reflections l = −26→26
5212 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0467P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.002
5212 reflections Δρmax = 0.30 e Å3
252 parameters Δρmin = −0.35 e Å3
0 restraints Absolute structure: Flack (1983), 2224 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.11 (10)

Special details

Experimental. The intensity data was collected on a Bruker X8 APEXII 4 K KappaCCD diffractometer using an exposure time of 20 s/frame. A total of 1010 frames were collected with a frame width of 0.5° covering up to θ = 28.33° with 99.9% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C11 0.7556 (4) −0.08285 (14) 0.92323 (10) 0.0145 (5)
C12 0.9663 (4) −0.10305 (14) 0.91217 (10) 0.0161 (5)
H12 1.0688 −0.0615 0.9079 0.019*
C13 1.0314 (4) −0.18282 (14) 0.90711 (11) 0.0161 (5)
H13 1.1769 −0.1948 0.8994 0.019*
C14 0.8830 (4) −0.24597 (13) 0.91337 (10) 0.0162 (5)
C15 0.6722 (4) −0.22578 (13) 0.92635 (11) 0.0166 (5)
H15 0.5697 −0.2671 0.9322 0.02*
C16 0.6103 (4) −0.14573 (14) 0.93076 (11) 0.0164 (5)
H16 0.4654 −0.1334 0.9391 0.02*
C17 0.7881 (4) −0.38862 (14) 0.91197 (13) 0.0247 (6)
H17A 0.6801 −0.382 0.877 0.037*
H17B 0.7206 −0.386 0.9562 0.037*
H17C 0.858 −0.4409 0.9065 0.037*
C18 1.1650 (5) −0.34575 (14) 0.89615 (11) 0.0208 (6)
H18A 1.2488 −0.328 0.9348 0.031*
H18B 1.218 −0.3195 0.8555 0.031*
H18C 1.1775 −0.4042 0.8913 0.031*
C21 0.7295 (4) 0.05075 (13) 1.01511 (11) 0.0145 (5)
C22 0.9324 (4) 0.04153 (13) 1.04203 (11) 0.0152 (5)
H22 1.0411 0.0179 1.0155 0.018*
C23 0.9787 (4) 0.06615 (14) 1.10679 (10) 0.0177 (5)
H23 1.1183 0.059 1.1239 0.021*
C24 0.8226 (4) 0.10145 (13) 1.14755 (11) 0.0171 (5)
C25 0.6184 (4) 0.10968 (14) 1.12077 (11) 0.0181 (6)
H25 0.5091 0.1328 1.1474 0.022*
C26 0.5730 (4) 0.08471 (13) 1.05623 (11) 0.0166 (5)
H26 0.4328 0.0907 1.0394 0.02*
C27 0.7173 (5) 0.17979 (17) 1.24584 (12) 0.0276 (7)
H27A 0.5815 0.1519 1.2517 0.041*
H27B 0.6955 0.2282 1.2187 0.041*
H27C 0.7739 0.1949 1.2898 0.041*
C28 1.0833 (4) 0.12767 (16) 1.23701 (12) 0.0253 (6)
H28A 1.163 0.1708 1.2149 0.038*
H28B 1.1508 0.0759 1.2273 0.038*
H28C 1.0826 0.1368 1.2855 0.038*
C31 0.8422 (4) 0.15896 (13) 0.88452 (11) 0.0178 (5)
H31 0.8743 0.1784 0.8382 0.021*
C32 0.6577 (5) 0.21017 (14) 0.90928 (13) 0.0262 (6)
H32A 0.6189 0.1936 0.9548 0.039*
H32B 0.5355 0.203 0.8794 0.039*
H32C 0.6999 0.2669 0.9095 0.039*
C33 1.0435 (5) 0.17255 (15) 0.92493 (13) 0.0276 (6)
H33A 1.151 0.133 0.9117 0.041*
H33B 1.0121 0.1665 0.9728 0.041*
H33C 1.0973 0.2269 0.9164 0.041*
C34 0.7688 (4) 0.04290 (14) 0.80697 (11) 0.0187 (6)
H34 0.7268 −0.015 0.8093 0.022*
C35 0.5943 (4) 0.08600 (16) 0.76836 (12) 0.0248 (6)
H35A 0.6317 0.1428 0.7633 0.037*
H35B 0.46 0.0815 0.7929 0.037*
H35C 0.5786 0.0614 0.724 0.037*
C36 0.9802 (4) 0.04601 (15) 0.77057 (12) 0.0244 (6)
H36A 1.0882 0.0181 0.7972 0.037*
H36B 1.0225 0.1022 0.7642 0.037*
H36C 0.9663 0.0198 0.7268 0.037*
N1 0.9457 (4) −0.32461 (12) 0.90623 (10) 0.0226 (5)
N2 0.8668 (4) 0.12702 (12) 1.21223 (9) 0.0207 (5)
N3 0.7898 (3) 0.07164 (11) 0.87759 (9) 0.0155 (5)
O1 0.4187 (3) 0.01727 (9) 0.92616 (7) 0.0194 (4)
P1 0.65325 (10) 0.01773 (4) 0.93260 (3) 0.01474 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C11 0.0215 (13) 0.0097 (11) 0.0122 (11) −0.0013 (9) 0.0018 (10) −0.0008 (9)
C12 0.0240 (14) 0.0117 (12) 0.0127 (10) −0.0043 (11) −0.0032 (10) −0.0016 (9)
C13 0.0190 (14) 0.0140 (12) 0.0154 (10) 0.0026 (10) −0.0004 (10) −0.0007 (9)
C14 0.0266 (16) 0.0102 (11) 0.0116 (9) −0.0017 (10) −0.0041 (10) 0.0009 (8)
C15 0.0230 (14) 0.0112 (11) 0.0155 (11) −0.0054 (11) −0.0008 (11) 0.0017 (9)
C16 0.0186 (14) 0.0163 (12) 0.0142 (10) −0.0017 (10) 0.0001 (11) −0.0004 (9)
C17 0.0333 (17) 0.0087 (12) 0.0322 (14) −0.0014 (11) −0.0030 (12) −0.0009 (11)
C18 0.0296 (16) 0.0118 (12) 0.0209 (12) 0.0017 (12) −0.0001 (12) −0.0014 (9)
C21 0.0254 (15) 0.0054 (12) 0.0126 (10) −0.0044 (10) 0.0026 (10) 0.0009 (8)
C22 0.0206 (14) 0.0071 (11) 0.0179 (11) 0.0009 (10) 0.0039 (10) −0.0003 (8)
C23 0.0223 (15) 0.0129 (12) 0.0179 (11) 0.0005 (11) −0.0009 (10) 0.0030 (9)
C24 0.0287 (16) 0.0089 (11) 0.0136 (10) −0.0022 (11) 0.0018 (10) 0.0017 (8)
C25 0.0249 (16) 0.0132 (12) 0.0163 (11) 0.0000 (11) 0.0057 (11) 0.0028 (9)
C26 0.0208 (14) 0.0109 (12) 0.0180 (11) 0.0002 (10) 0.0003 (10) 0.0043 (9)
C27 0.0339 (19) 0.0338 (16) 0.0152 (12) 0.0073 (13) −0.0013 (11) −0.0078 (11)
C28 0.0310 (18) 0.0296 (16) 0.0153 (11) 0.0006 (12) −0.0012 (11) −0.0011 (10)
C31 0.0291 (15) 0.0079 (11) 0.0165 (10) −0.0023 (11) 0.0022 (11) 0.0011 (8)
C32 0.0367 (17) 0.0144 (13) 0.0275 (12) 0.0034 (13) 0.0108 (13) 0.0031 (10)
C33 0.0352 (17) 0.0160 (13) 0.0317 (14) −0.0079 (12) −0.0089 (14) 0.0037 (11)
C34 0.0268 (15) 0.0137 (13) 0.0157 (11) −0.0002 (11) −0.0012 (11) −0.0018 (9)
C35 0.0324 (17) 0.0232 (15) 0.0187 (12) −0.0005 (12) −0.0038 (11) 0.0011 (10)
C36 0.0325 (17) 0.0218 (14) 0.0189 (12) −0.0001 (12) 0.0047 (12) −0.0028 (10)
N1 0.0260 (13) 0.0086 (10) 0.0331 (11) −0.0005 (9) −0.0009 (10) −0.0024 (9)
N2 0.0266 (13) 0.0231 (12) 0.0124 (9) 0.0042 (10) 0.0003 (9) −0.0037 (8)
N3 0.0267 (13) 0.0081 (10) 0.0118 (9) −0.0036 (9) 0.0004 (8) −0.0021 (8)
O1 0.0211 (10) 0.0136 (8) 0.0235 (8) 0.0005 (7) −0.0008 (7) −0.0014 (7)
P1 0.0209 (3) 0.0094 (3) 0.0140 (3) 0.0000 (3) −0.0002 (3) −0.0005 (2)

Geometric parameters (Å, º)

C11—C12 1.386 (3) C26—H26 0.95
C11—C16 1.398 (3) C27—N2 1.451 (3)
C11—P1 1.803 (2) C27—H27A 0.98
C12—C13 1.393 (3) C27—H27B 0.98
C12—H12 0.95 C27—H27C 0.98
C13—C14 1.412 (3) C28—N2 1.450 (3)
C13—H13 0.95 C28—H28A 0.98
C14—N1 1.374 (3) C28—H28B 0.98
C14—C15 1.393 (3) C28—H28C 0.98
C15—C16 1.391 (3) C31—N3 1.496 (3)
C15—H15 0.95 C31—C33 1.519 (4)
C16—H16 0.95 C31—C32 1.523 (4)
C17—N1 1.460 (3) C31—H31 1
C17—H17A 0.98 C32—H32A 0.98
C17—H17B 0.98 C32—H32B 0.98
C17—H17C 0.98 C32—H32C 0.98
C18—N1 1.439 (3) C33—H33A 0.98
C18—H18A 0.98 C33—H33B 0.98
C18—H18B 0.98 C33—H33C 0.98
C18—H18C 0.98 C34—N3 1.493 (3)
C21—C22 1.395 (3) C34—C36 1.517 (4)
C21—C26 1.401 (3) C34—C35 1.521 (3)
C21—P1 1.800 (2) C34—H34 1
C22—C23 1.386 (3) C35—H35A 0.98
C22—H22 0.95 C35—H35B 0.98
C23—C24 1.404 (3) C35—H35C 0.98
C23—H23 0.95 C36—H36A 0.98
C24—N2 1.387 (3) C36—H36B 0.98
C24—C25 1.399 (3) C36—H36C 0.98
C25—C26 1.383 (3) N3—P1 1.658 (2)
C25—H25 0.95 O1—P1 1.4825 (17)
C12—C11—C16 117.5 (2) H28A—C28—H28B 109.5
C12—C11—P1 125.71 (18) N2—C28—H28C 109.5
C16—C11—P1 116.71 (19) H28A—C28—H28C 109.5
C11—C12—C13 121.6 (2) H28B—C28—H28C 109.5
C11—C12—H12 119.2 N3—C31—C33 112.16 (19)
C13—C12—H12 119.2 N3—C31—C32 113.9 (2)
C12—C13—C14 120.5 (2) C33—C31—C32 112.4 (2)
C12—C13—H13 119.7 N3—C31—H31 105.9
C14—C13—H13 119.7 C33—C31—H31 105.9
N1—C14—C15 121.5 (2) C32—C31—H31 105.9
N1—C14—C13 120.6 (2) C31—C32—H32A 109.5
C15—C14—C13 117.9 (2) C31—C32—H32B 109.5
C16—C15—C14 120.6 (2) H32A—C32—H32B 109.5
C16—C15—H15 119.7 C31—C32—H32C 109.5
C14—C15—H15 119.7 H32A—C32—H32C 109.5
C15—C16—C11 121.8 (2) H32B—C32—H32C 109.5
C15—C16—H16 119.1 C31—C33—H33A 109.5
C11—C16—H16 119.1 C31—C33—H33B 109.5
N1—C17—H17A 109.5 H33A—C33—H33B 109.5
N1—C17—H17B 109.5 C31—C33—H33C 109.5
H17A—C17—H17B 109.5 H33A—C33—H33C 109.5
N1—C17—H17C 109.5 H33B—C33—H33C 109.5
H17A—C17—H17C 109.5 N3—C34—C36 111.3 (2)
H17B—C17—H17C 109.5 N3—C34—C35 113.0 (2)
N1—C18—H18A 109.5 C36—C34—C35 112.0 (2)
N1—C18—H18B 109.5 N3—C34—H34 106.7
H18A—C18—H18B 109.5 C36—C34—H34 106.7
N1—C18—H18C 109.5 C35—C34—H34 106.7
H18A—C18—H18C 109.5 C34—C35—H35A 109.5
H18B—C18—H18C 109.5 C34—C35—H35B 109.5
C22—C21—C26 117.6 (2) H35A—C35—H35B 109.5
C22—C21—P1 124.24 (18) C34—C35—H35C 109.5
C26—C21—P1 118.10 (19) H35A—C35—H35C 109.5
C23—C22—C21 121.2 (2) H35B—C35—H35C 109.5
C23—C22—H22 119.4 C34—C36—H36A 109.5
C21—C22—H22 119.4 C34—C36—H36B 109.5
C22—C23—C24 121.1 (2) H36A—C36—H36B 109.5
C22—C23—H23 119.5 C34—C36—H36C 109.5
C24—C23—H23 119.5 H36A—C36—H36C 109.5
N2—C24—C25 120.6 (2) H36B—C36—H36C 109.5
N2—C24—C23 121.8 (2) C14—N1—C18 121.5 (2)
C25—C24—C23 117.6 (2) C14—N1—C17 119.4 (2)
C26—C25—C24 121.0 (2) C18—N1—C17 119.0 (2)
C26—C25—H25 119.5 C24—N2—C28 120.5 (2)
C24—C25—H25 119.5 C24—N2—C27 119.1 (2)
C25—C26—C21 121.4 (2) C28—N2—C27 116.6 (2)
C25—C26—H26 119.3 C34—N3—C31 114.68 (17)
C21—C26—H26 119.3 C34—N3—P1 113.89 (16)
N2—C27—H27A 109.5 C31—N3—P1 125.34 (15)
N2—C27—H27B 109.5 O1—P1—N3 117.53 (10)
H27A—C27—H27B 109.5 O1—P1—C21 110.27 (11)
N2—C27—H27C 109.5 N3—P1—C21 107.57 (11)
H27A—C27—H27C 109.5 O1—P1—C11 110.03 (11)
H27B—C27—H27C 109.5 N3—P1—C11 104.36 (11)
N2—C28—H28A 109.5 C21—P1—C11 106.42 (11)
N2—C28—H28B 109.5
C16—C11—C12—C13 1.5 (3) C23—C24—N2—C27 165.3 (2)
P1—C11—C12—C13 178.49 (16) C36—C34—N3—C31 66.8 (3)
C11—C12—C13—C14 −0.2 (3) C35—C34—N3—C31 −60.2 (3)
C12—C13—C14—N1 177.9 (2) C36—C34—N3—P1 −139.05 (18)
C12—C13—C14—C15 −1.6 (3) C35—C34—N3—P1 93.9 (2)
N1—C14—C15—C16 −177.4 (2) C33—C31—N3—C34 −123.5 (2)
C13—C14—C15—C16 2.0 (3) C32—C31—N3—C34 107.4 (2)
C14—C15—C16—C11 −0.8 (3) C33—C31—N3—P1 85.7 (3)
C12—C11—C16—C15 −1.0 (3) C32—C31—N3—P1 −43.4 (3)
P1—C11—C16—C15 −178.30 (17) C34—N3—P1—O1 −63.71 (19)
C26—C21—C22—C23 −0.9 (3) C31—N3—P1—O1 87.2 (2)
P1—C21—C22—C23 −177.98 (17) C34—N3—P1—C21 171.21 (16)
C21—C22—C23—C24 −0.2 (3) C31—N3—P1—C21 −37.9 (2)
C22—C23—C24—N2 −179.4 (2) C34—N3—P1—C11 58.44 (18)
C22—C23—C24—C25 1.0 (3) C31—N3—P1—C11 −150.6 (2)
N2—C24—C25—C26 179.7 (2) C22—C21—P1—O1 165.50 (18)
C23—C24—C25—C26 −0.7 (3) C26—C21—P1—O1 −11.5 (2)
C24—C25—C26—C21 −0.4 (3) C22—C21—P1—N3 −65.2 (2)
C22—C21—C26—C25 1.2 (3) C26—C21—P1—N3 117.78 (18)
P1—C21—C26—C25 178.44 (17) C22—C21—P1—C11 46.2 (2)
C15—C14—N1—C18 −176.9 (2) C26—C21—P1—C11 −130.84 (18)
C13—C14—N1—C18 3.7 (3) C12—C11—P1—O1 165.47 (17)
C15—C14—N1—C17 0.3 (3) C16—C11—P1—O1 −17.5 (2)
C13—C14—N1—C17 −179.1 (2) C12—C11—P1—N3 38.5 (2)
C25—C24—N2—C28 −172.3 (2) C16—C11—P1—N3 −144.44 (17)
C23—C24—N2—C28 8.1 (3) C12—C11—P1—C21 −75.1 (2)
C25—C24—N2—C27 −15.2 (3) C16—C11—P1—C21 101.96 (19)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C11—C16 and C21—C26 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C12—H12···O1i 0.95 2.59 3.493 (3) 159
C33—H33A···O1i 0.98 2.58 3.501 (3) 158
C18—H18A···Cg1ii 0.98 2.96 3.821 (2) 148
C18—H18C···Cg2ii 0.98 2.97 3.915 (3) 162
C27—H27C···Cg1iii 0.98 2.69 3.468 (3) 137

Symmetry codes: (i) x+1, y, z; (ii) −x, y+3/2, −z+1/2; (iii) −x+1/2, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6869).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2004). SADABS, SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Otto, S. (2001). Acta Cryst. C57, 793–795. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Snieckus, V. (1990). Chem. Rev. 90, 879–933.
  10. Tolman, C. A. (1977). Chem. Rev. 77, 313–348.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  12. Williams, D. B. G., Evans, S. J., De Bod, H., Mokhadinyana, M. S. & Hughes, T. (2009). Synthesis, 18, 3106–3112.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812050398/bt6869sup1.cif

e-69-0o195-sup1.cif (30KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050398/bt6869Isup2.hkl

e-69-0o195-Isup2.hkl (250.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812050398/bt6869Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES