Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 9;69(Pt 2):o197. doi: 10.1107/S1600536812050982

4-Methyl-6-(piperidin-1-yl)pyrimidin-2-amine

S Sreenivasa a,*, K E ManojKumar a, T Srinivasan b, P A Suchetan c, B S Palakshamurthy d, D Velumurgan b
PMCID: PMC3569258  PMID: 23424481

Abstract

The title compound, C10H16N4, crystalizes with two mol­ecules (A and B) in the asymmetric unit in which the dihedral angles between the piperidine and pyrimidine rings are 47.5 (1) and 10.3 (1)°. The four C atoms of the pyrimidine ring in one of the mol­ecules are disordered over two sets of sites with occupancy factors 0.508 (11):0.492 (11). In the crystal, the A mol­ecules are linked to one another through N—H⋯N hydrogen bonds, generating R 2 2(8) ring patterns and forming inversion dimers. These dimers are further connected on either side to a B molecule through pairs of N—H⋯N hydrogen bonds, resulting in a tetra­meric unit.

Related literature  

For background to pyrimidine derivatives and their biological activity, see: Patel et al. (2003) and for a related structure see: Sreenivasa et al. (2012). For hydrogen bond motifs, see: Bernstein et al. (1995).graphic file with name e-69-0o197-scheme1.jpg

Experimental  

Crystal data  

  • C10H16N4

  • M r = 192.27

  • Monoclinic, Inline graphic

  • a = 13.9605 (4) Å

  • b = 8.7564 (3) Å

  • c = 17.7055 (6) Å

  • β = 104.381 (2)°

  • V = 2096.57 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.20 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.972, T max = 0.985

  • 15644 measured reflections

  • 3708 independent reflections

  • 2657 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.171

  • S = 1.10

  • 3708 reflections

  • 308 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812050982/sj5288sup1.cif

e-69-0o197-sup1.cif (34.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050982/sj5288Isup2.hkl

e-69-0o197-Isup2.hkl (181.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812050982/sj5288Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—HN3B⋯N1i 0.86 (2) 2.19 (2) 3.043 (2) 173.3 (19)
N3—HN3A⋯N5 0.90 (2) 2.34 (2) 3.210 (2) 162.1 (17)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Dr S. C. Sharma, Vice Chancellor, Tumkur University, for his constant encouragement. BSP thanks Dr H. C. Devarajegowda, Department of Physics, Yuvarajas College (constituent), University of Mysore, for his support and guidence.

supplementary crystallographic information

Comment

Compounds with a nitrogen-containing heterocyclic ring, such as pyrimidine, are promising candidates for drug design. Pyrimidine derivatives form a component in a number of useful drugs and are associated with many biological and therapeutic activities (Patel et al., 2003). With this in mind, we synthesized the title compound to study its crystal structure.

The title compound crystallizes with two molecules in the asymmetric unit with the piperidine rings in each molecule adopting chair conformations. The dihedral angles between the piperidine ring and pyrimidine rings in the two molecules are 47.5 (1)o and 10.3 (1)o respectively, compared to 14.00 (1)° observed in 1-(2-amino-6-methylpyrimidin-4-yl)-N,N-dimethylpiperidin-4-aminium chloride (Sreenivasa et al., 2012).

In the crystal structure, the molecules are linked to one another through N—H···N hydrogen bonds generating R22(8) ring patterns (Bernstein et al., 1995) forming inversion related dimers. These dimers are further connected to one another through a second N—H···N hydrogen bonds resulting in a tetrameric unit.

Experimental

2-Amino-4-chloro-6-methylpyrimidine(1.39 mmol) was dissolved in acetonirile (3 ml). To this solution, piperidine (1.66 mmol) Xantphos (4,5-bis-diphenylphosphino-9,9-dimethylxanthene), Pd(OAc)2 and Cs2CO3 (0.0695, 0.139 and 2.78 mmole respectively) were added. The reaction mixture was irradiated in a microwave at 60° C for 1.5 hrs. The reaction was monitored by TLC. Acetonitrile was removed under vacuum and the crude product was purified by column chromatography using CH2Cl2/methanol as eluents. The single-crystal required for the X-ray diffraction was grown by the slow evaporation technique from CH2Cl2 and MeOH (1:4).

Refinement

The H atoms bound to carbon were positioned with idealized geometry using a riding model with d(C–H) = 0.93- 0.97 Å. All C–H atoms were refined with isotropic displacement parameters set to 1.2–1.5 Ueq(C). N—H atoms were located in a difference Fourier map and refined freely. The C16, C17, C19 and C20 carbon atoms of a pyrimidine ring in one of the molecules were disordered over two sites and refined with site occupancy factors 0.508 (11):0.492 (11).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound with hydrogen bonds drawn as dashed lines.

Crystal data

C10H16N4 Prism
Mr = 192.27 Dx = 1.218 Mg m3
Monoclinic, P21/n Melting point: 455 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 13.9605 (4) Å Cell parameters from 308 reflections
b = 8.7564 (3) Å θ = 1.7–25.0°
c = 17.7055 (6) Å µ = 0.08 mm1
β = 104.381 (2)° T = 293 K
V = 2096.57 (12) Å3 Prism, colourless
Z = 8 0.24 × 0.22 × 0.20 mm
F(000) = 832

Data collection

Bruker APEXII diffractometer 3708 independent reflections
Radiation source: fine-focus sealed tube 2657 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 1.20 pixels mm-1 θmax = 25.0°, θmin = 1.7°
φ and ω scans h = −16→16
Absorption correction: multi-scan (SADABS; Bruker, 2004) k = −10→10
Tmin = 0.972, Tmax = 0.985 l = −11→21
15644 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171 H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0937P)2 + 0.2814P] where P = (Fo2 + 2Fc2)/3
3708 reflections (Δ/σ)max = 0.006
308 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.20 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C20A −0.0217 (5) 1.3253 (10) 0.2458 (5) 0.0712 (18) 0.508 (11)
H20A 0.0420 1.3494 0.2804 0.085* 0.508 (11)
H20B −0.0421 1.4113 0.2110 0.085* 0.508 (11)
C16A −0.1147 (5) 1.1602 (10) 0.1412 (5) 0.0704 (17) 0.508 (11)
H16A −0.1335 1.2501 0.1089 0.085* 0.508 (11)
H16B −0.1116 1.0740 0.1075 0.085* 0.508 (11)
C19A −0.0960 (6) 1.2997 (13) 0.2928 (5) 0.083 (2) 0.508 (11)
H19A −0.1003 1.3892 0.3241 0.100* 0.508 (11)
H19B −0.0767 1.2131 0.3274 0.100* 0.508 (11)
C17A −0.1892 (5) 1.1300 (10) 0.1878 (5) 0.0796 (19) 0.508 (11)
H17A −0.1695 1.0418 0.2212 0.096* 0.508 (11)
H17B −0.2535 1.1095 0.1532 0.096* 0.508 (11)
C20B −0.0077 (4) 1.2596 (9) 0.2749 (4) 0.0596 (15) 0.492 (11)
H20C 0.0531 1.3173 0.2917 0.072* 0.492 (11)
H20D −0.0096 1.1832 0.3142 0.072* 0.492 (11)
C16B −0.1007 (5) 1.0966 (10) 0.1681 (5) 0.0660 (17) 0.492 (11)
H16C −0.1055 1.0146 0.2038 0.079* 0.492 (11)
H16D −0.0980 1.0518 0.1185 0.079* 0.492 (11)
C19B −0.0955 (6) 1.3643 (11) 0.2640 (6) 0.082 (2) 0.492 (11)
H19C −0.0924 1.4413 0.2253 0.098* 0.492 (11)
H19D −0.0945 1.4157 0.3127 0.098* 0.492 (11)
C17B −0.1888 (5) 1.1995 (12) 0.1571 (5) 0.083 (2) 0.492 (11)
H17C −0.2486 1.1418 0.1352 0.099* 0.492 (11)
H17D −0.1840 1.2806 0.1210 0.099* 0.492 (11)
N2 0.34290 (11) 0.69695 (17) 0.02892 (9) 0.0568 (4)
N1 0.45148 (11) 0.81391 (17) −0.04021 (9) 0.0567 (4)
N6 0.06632 (13) 1.04169 (19) 0.12363 (10) 0.0651 (5)
C1 0.39782 (13) 0.8129 (2) 0.01325 (10) 0.0521 (4)
N5 0.24230 (13) 1.01232 (19) 0.15556 (9) 0.0625 (4)
N8 −0.01255 (12) 1.1855 (2) 0.19909 (10) 0.0691 (5)
N3 0.39837 (14) 0.9424 (2) 0.05401 (11) 0.0667 (5)
C13 0.16605 (15) 1.1656 (2) 0.23497 (11) 0.0633 (5)
H13 0.1719 1.2282 0.2783 0.076*
C12 0.07320 (15) 1.1318 (2) 0.18608 (11) 0.0592 (5)
C3 0.39578 (15) 0.5598 (2) −0.06970 (13) 0.0666 (5)
H3 0.3949 0.4715 −0.0991 0.080*
C2 0.34414 (14) 0.5670 (2) −0.01117 (12) 0.0595 (5)
C14 0.24743 (15) 1.1046 (2) 0.21758 (11) 0.0617 (5)
C4 0.44712 (14) 0.6853 (2) −0.08232 (11) 0.0602 (5)
C11 0.15060 (16) 0.9868 (2) 0.11237 (11) 0.0622 (5)
N4 0.29598 (14) 0.4436 (2) 0.00895 (12) 0.0778 (6)
C5 0.50160 (19) 0.6890 (3) −0.14531 (15) 0.0847 (7)
H5A 0.4642 0.7467 −0.1888 0.127*
H5B 0.5104 0.5866 −0.1618 0.127*
H5C 0.5650 0.7360 −0.1257 0.127*
N7 0.1425 (2) 0.8938 (3) 0.04986 (13) 0.0840 (6)
C6 0.23128 (17) 0.4557 (3) 0.06164 (14) 0.0758 (6)
H6A 0.2446 0.5506 0.0906 0.091*
H6B 0.2446 0.3720 0.0987 0.091*
C10 0.2798 (2) 0.3038 (3) −0.03645 (18) 0.0907 (8)
H10A 0.2916 0.2164 −0.0017 0.109*
H10B 0.3259 0.2987 −0.0693 0.109*
C15 0.34854 (17) 1.1346 (3) 0.26812 (13) 0.0859 (7)
H15A 0.3760 1.0413 0.2928 0.129*
H15B 0.3444 1.2084 0.3073 0.129*
H15C 0.3902 1.1734 0.2368 0.129*
C7 0.12597 (18) 0.4514 (3) 0.01778 (16) 0.0875 (7)
H7A 0.1102 0.5441 −0.0128 0.105*
H7B 0.0846 0.4481 0.0544 0.105*
C18 −0.19444 (19) 1.2695 (4) 0.23650 (17) 0.1021 (9)
H18A −0.2134 1.3573 0.2027 0.122*
H18B −0.2445 1.2545 0.2652 0.122*
C9 0.1765 (2) 0.2990 (3) −0.08581 (17) 0.0976 (9)
H9A 0.1656 0.2034 −0.1143 0.117*
H9B 0.1667 0.3816 −0.1234 0.117*
C8 0.1027 (2) 0.3137 (3) −0.03636 (18) 0.0964 (8)
H8A 0.1042 0.2217 −0.0056 0.116*
H8B 0.0367 0.3243 −0.0700 0.116*
HN3B 0.4368 (16) 1.015 (3) 0.0472 (12) 0.068 (6)*
HN3A 0.3653 (15) 0.953 (2) 0.0914 (12) 0.061 (6)*
HN7B 0.194 (2) 0.851 (3) 0.0398 (15) 0.092 (8)*
HN7A 0.086 (2) 0.875 (3) 0.0231 (15) 0.086 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C20A 0.075 (4) 0.070 (4) 0.072 (4) −0.002 (3) 0.025 (3) −0.007 (3)
C16A 0.078 (4) 0.074 (4) 0.057 (4) 0.000 (3) 0.011 (3) 0.001 (3)
C19A 0.083 (4) 0.105 (6) 0.068 (4) −0.003 (4) 0.032 (3) −0.011 (3)
C17A 0.065 (3) 0.089 (4) 0.084 (4) −0.008 (3) 0.017 (3) 0.011 (3)
C20B 0.061 (3) 0.059 (4) 0.057 (3) 0.006 (3) 0.012 (2) −0.007 (2)
C16B 0.057 (3) 0.079 (4) 0.056 (4) −0.003 (3) 0.000 (3) −0.002 (3)
C19B 0.086 (4) 0.083 (5) 0.078 (5) 0.020 (4) 0.023 (4) −0.011 (3)
C17B 0.065 (3) 0.104 (6) 0.073 (4) 0.014 (4) 0.003 (3) −0.007 (4)
N2 0.0565 (9) 0.0569 (9) 0.0578 (9) −0.0122 (7) 0.0157 (7) −0.0061 (7)
N1 0.0557 (9) 0.0573 (9) 0.0586 (9) −0.0092 (7) 0.0170 (7) −0.0045 (7)
N6 0.0722 (11) 0.0659 (10) 0.0625 (10) −0.0134 (8) 0.0269 (8) −0.0161 (8)
C1 0.0476 (10) 0.0558 (11) 0.0506 (10) −0.0043 (8) 0.0080 (8) −0.0007 (8)
N5 0.0732 (11) 0.0646 (10) 0.0541 (9) −0.0036 (8) 0.0242 (8) −0.0026 (8)
N8 0.0650 (10) 0.0764 (11) 0.0697 (11) −0.0104 (8) 0.0240 (8) −0.0231 (9)
N3 0.0783 (12) 0.0551 (10) 0.0747 (12) −0.0164 (9) 0.0338 (10) −0.0126 (9)
C13 0.0738 (13) 0.0672 (12) 0.0518 (11) −0.0099 (10) 0.0210 (10) −0.0125 (9)
C12 0.0715 (13) 0.0561 (11) 0.0553 (11) −0.0114 (9) 0.0257 (10) −0.0069 (9)
C3 0.0682 (12) 0.0600 (12) 0.0760 (13) −0.0113 (9) 0.0260 (10) −0.0174 (10)
C2 0.0543 (10) 0.0578 (11) 0.0660 (12) −0.0095 (9) 0.0143 (9) −0.0046 (9)
C14 0.0727 (13) 0.0650 (12) 0.0512 (11) −0.0045 (10) 0.0228 (10) 0.0006 (9)
C4 0.0548 (11) 0.0660 (12) 0.0611 (11) −0.0064 (9) 0.0169 (9) −0.0076 (10)
C11 0.0795 (14) 0.0564 (11) 0.0561 (11) −0.0109 (10) 0.0272 (11) −0.0068 (9)
N4 0.0822 (12) 0.0612 (10) 0.0997 (14) −0.0233 (9) 0.0408 (11) −0.0137 (10)
C5 0.0928 (17) 0.0897 (16) 0.0841 (16) −0.0221 (13) 0.0457 (13) −0.0206 (13)
N7 0.0812 (16) 0.0935 (15) 0.0811 (14) −0.0078 (12) 0.0272 (12) −0.0374 (12)
C6 0.0790 (15) 0.0723 (14) 0.0811 (14) −0.0201 (11) 0.0292 (12) −0.0006 (12)
C10 0.1000 (19) 0.0553 (13) 0.126 (2) −0.0135 (12) 0.0452 (17) −0.0109 (13)
C15 0.0708 (14) 0.120 (2) 0.0663 (14) −0.0035 (13) 0.0170 (11) −0.0171 (14)
C7 0.0761 (15) 0.0896 (17) 0.0987 (18) −0.0061 (13) 0.0251 (13) 0.0031 (15)
C18 0.0704 (16) 0.145 (3) 0.0921 (18) 0.0128 (16) 0.0228 (13) −0.0197 (18)
C9 0.124 (2) 0.0717 (16) 0.0945 (19) −0.0238 (15) 0.0227 (17) −0.0130 (13)
C8 0.0778 (16) 0.0921 (18) 0.111 (2) −0.0215 (13) 0.0074 (14) −0.0036 (16)

Geometric parameters (Å, º)

C20A—C19A 1.500 (11) N3—HN3B 0.86 (2)
C20A—N8 1.500 (7) N3—HN3A 0.90 (2)
C20A—H20A 0.9700 C13—C14 1.358 (3)
C20A—H20B 0.9700 C13—C12 1.400 (3)
C16A—C17A 1.504 (11) C13—H13 0.9300
C16A—N8 1.552 (7) C3—C4 1.361 (3)
C16A—H16A 0.9700 C3—C2 1.403 (3)
C16A—H16B 0.9700 C3—H3 0.9300
C19A—C18 1.507 (9) C2—N4 1.366 (2)
C19A—H19A 0.9700 C14—C15 1.495 (3)
C19A—H19B 0.9700 C4—C5 1.498 (3)
C17A—C18 1.507 (7) C11—N7 1.356 (3)
C17A—H17A 0.9700 N4—C10 1.451 (3)
C17A—H17B 0.9700 N4—C6 1.455 (3)
C20B—N8 1.477 (6) C5—H5A 0.9600
C20B—C19B 1.504 (11) C5—H5B 0.9600
C20B—H20C 0.9700 C5—H5C 0.9600
C20B—H20D 0.9700 N7—HN7B 0.86 (3)
C16B—N8 1.445 (6) N7—HN7A 0.83 (3)
C16B—C17B 1.498 (12) C6—C7 1.483 (3)
C16B—H16C 0.9700 C6—H6A 0.9700
C16B—H16D 0.9700 C6—H6B 0.9700
C19B—C18 1.580 (9) C10—C9 1.490 (4)
C19B—H19C 0.9700 C10—H10A 0.9700
C19B—H19D 0.9700 C10—H10B 0.9700
C17B—C18 1.553 (7) C15—H15A 0.9600
C17B—H17C 0.9700 C15—H15B 0.9600
C17B—H17D 0.9700 C15—H15C 0.9600
N2—C1 1.342 (2) C7—C8 1.524 (4)
N2—C2 1.344 (2) C7—H7A 0.9700
N1—C4 1.344 (2) C7—H7B 0.9700
N1—C1 1.345 (2) C18—H18A 0.9700
N6—C11 1.331 (3) C18—H18B 0.9700
N6—C12 1.342 (2) C9—C8 1.514 (4)
C1—N3 1.343 (2) C9—H9A 0.9700
N5—C11 1.337 (3) C9—H9B 0.9700
N5—C14 1.351 (2) C8—H8A 0.9700
N8—C12 1.358 (3) C8—H8B 0.9700
C19A—C20A—N8 110.5 (7) C4—C3—H3 120.9
C19A—C20A—H20A 109.6 C2—C3—H3 120.9
N8—C20A—H20A 109.6 N2—C2—N4 117.42 (17)
C19A—C20A—H20B 109.6 N2—C2—C3 120.31 (17)
N8—C20A—H20B 109.5 N4—C2—C3 122.24 (18)
H20A—C20A—H20B 108.1 N5—C14—C13 122.76 (19)
C17A—C16A—N8 108.1 (7) N5—C14—C15 116.32 (18)
C17A—C16A—H16A 110.1 C13—C14—C15 120.91 (19)
N8—C16A—H16A 110.1 N1—C4—C3 122.61 (18)
C17A—C16A—H16B 110.1 N1—C4—C5 115.69 (17)
N8—C16A—H16B 110.1 C3—C4—C5 121.69 (18)
H16A—C16A—H16B 108.4 N6—C11—N5 127.62 (18)
C20A—C19A—C18 107.5 (7) N6—C11—N7 116.2 (2)
C20A—C19A—H19A 110.2 N5—C11—N7 116.2 (2)
C18—C19A—H19A 110.2 C2—N4—C10 122.80 (19)
C20A—C19A—H19B 110.2 C2—N4—C6 122.29 (17)
C18—C19A—H19B 110.2 C10—N4—C6 112.38 (17)
H19A—C19A—H19B 108.5 C4—C5—H5A 109.5
C16A—C17A—C18 108.0 (6) C4—C5—H5B 109.5
C16A—C17A—H17A 110.1 H5A—C5—H5B 109.5
C18—C17A—H17A 110.1 C4—C5—H5C 109.5
C16A—C17A—H17B 110.1 H5A—C5—H5C 109.5
C18—C17A—H17B 110.1 H5B—C5—H5C 109.5
H17A—C17A—H17B 108.4 C11—N7—HN7B 121.5 (18)
N8—C20B—C19B 107.4 (7) C11—N7—HN7A 117.4 (19)
N8—C20B—H20C 110.2 HN7B—N7—HN7A 121 (3)
C19B—C20B—H20C 110.2 N4—C6—C7 110.8 (2)
N8—C20B—H20D 110.2 N4—C6—H6A 109.5
C19B—C20B—H20D 110.2 C7—C6—H6A 109.5
H20C—C20B—H20D 108.5 N4—C6—H6B 109.5
N8—C16B—C17B 108.6 (7) C7—C6—H6B 109.5
N8—C16B—H16C 110.0 H6A—C6—H6B 108.1
C17B—C16B—H16C 110.0 N4—C10—C9 110.1 (2)
N8—C16B—H16D 110.0 N4—C10—H10A 109.6
C17B—C16B—H16D 110.0 C9—C10—H10A 109.6
H16C—C16B—H16D 108.3 N4—C10—H10B 109.6
C20B—C19B—C18 110.0 (6) C9—C10—H10B 109.6
C20B—C19B—H19C 109.7 H10A—C10—H10B 108.2
C18—C19B—H19C 109.7 C14—C15—H15A 109.5
C20B—C19B—H19D 109.7 C14—C15—H15B 109.5
C18—C19B—H19D 109.7 H15A—C15—H15B 109.5
H19C—C19B—H19D 108.2 C14—C15—H15C 109.5
C16B—C17B—C18 110.2 (6) H15A—C15—H15C 109.5
C16B—C17B—H17C 109.6 H15B—C15—H15C 109.5
C18—C17B—H17C 109.6 C6—C7—C8 112.2 (2)
C16B—C17B—H17D 109.6 C6—C7—H7A 109.2
C18—C17B—H17D 109.6 C8—C7—H7A 109.2
H17C—C17B—H17D 108.1 C6—C7—H7B 109.2
C1—N2—C2 116.66 (16) C8—C7—H7B 109.2
C4—N1—C1 115.39 (15) H7A—C7—H7B 107.9
C11—N6—C12 116.79 (17) C19A—C18—C17A 110.8 (5)
N2—C1—N3 117.06 (17) C19A—C18—C17B 115.2 (4)
N2—C1—N1 126.63 (16) C17A—C18—C19B 116.0 (4)
N3—C1—N1 116.30 (16) C17B—C18—C19B 104.4 (6)
C11—N5—C14 114.52 (17) C19A—C18—H18A 109.5
C12—N8—C16B 116.9 (3) C17A—C18—H18A 109.5
C12—N8—C20B 117.6 (3) C19A—C18—H18B 109.5
C16B—N8—C20B 115.1 (4) C17A—C18—H18B 109.5
C12—N8—C20A 125.1 (3) C17B—C18—H18B 128.8
C16B—N8—C20A 117.9 (4) C19B—C18—H18B 126.7
C12—N8—C16A 122.9 (3) H18A—C18—H18B 108.1
C20B—N8—C16A 119.3 (4) C10—C9—C8 110.9 (2)
C20A—N8—C16A 106.9 (5) C10—C9—H9A 109.5
C1—N3—HN3B 117.9 (14) C8—C9—H9A 109.5
C1—N3—HN3A 123.4 (13) C10—C9—H9B 109.5
HN3B—N3—HN3A 118 (2) C8—C9—H9B 109.5
C14—C13—C12 118.35 (18) H9A—C9—H9B 108.0
C14—C13—H13 120.8 C9—C8—C7 111.2 (2)
C12—C13—H13 120.8 C9—C8—H8A 109.4
N6—C12—N8 117.23 (18) C7—C8—H8A 109.4
N6—C12—C13 119.96 (18) C9—C8—H8B 109.4
N8—C12—C13 122.81 (18) C7—C8—H8B 109.4
C4—C3—C2 118.24 (18) H8A—C8—H8B 108.0
N8—C20A—C19A—C18 −61.6 (12) C4—C3—C2—N2 2.5 (3)
N8—C16A—C17A—C18 62.1 (10) C4—C3—C2—N4 −175.7 (2)
N8—C20B—C19B—C18 59.8 (11) C11—N5—C14—C13 0.5 (3)
N8—C16B—C17B—C18 −60.5 (12) C11—N5—C14—C15 179.23 (19)
C2—N2—C1—N3 −178.88 (17) C12—C13—C14—N5 −0.4 (3)
C2—N2—C1—N1 2.3 (3) C12—C13—C14—C15 −179.1 (2)
C4—N1—C1—N2 1.2 (3) C1—N1—C4—C3 −2.9 (3)
C4—N1—C1—N3 −177.69 (17) C1—N1—C4—C5 176.35 (18)
C17B—C16B—N8—C12 −156.0 (6) C2—C3—C4—N1 1.2 (3)
C17B—C16B—N8—C20B 59.8 (12) C2—C3—C4—C5 −178.0 (2)
C17B—C16B—N8—C20A 26.6 (13) C12—N6—C11—N5 −0.9 (3)
C17B—C16B—N8—C16A −45.9 (10) C12—N6—C11—N7 178.89 (18)
C19B—C20B—N8—C12 156.4 (6) C14—N5—C11—N6 0.3 (3)
C19B—C20B—N8—C16B −59.6 (12) C14—N5—C11—N7 −179.58 (19)
C19B—C20B—N8—C20A 43.2 (8) N2—C2—N4—C10 171.1 (2)
C19B—C20B—N8—C16A −28.6 (12) C3—C2—N4—C10 −10.7 (3)
C19A—C20A—N8—C12 −141.8 (6) N2—C2—N4—C6 10.5 (3)
C19A—C20A—N8—C16B 35.4 (14) C3—C2—N4—C6 −171.3 (2)
C19A—C20A—N8—C20B −56.9 (9) C2—N4—C6—C7 103.3 (2)
C19A—C20A—N8—C16A 63.1 (12) C10—N4—C6—C7 −59.1 (3)
C17A—C16A—N8—C12 141.3 (5) C2—N4—C10—C9 −101.0 (3)
C17A—C16A—N8—C16B 55.4 (10) C6—N4—C10—C9 61.3 (3)
C17A—C16A—N8—C20B −33.4 (11) N4—C6—C7—C8 52.6 (3)
C17A—C16A—N8—C20A −62.9 (10) C20A—C19A—C18—C17A 60.3 (12)
C11—N6—C12—N8 −178.51 (18) C20A—C19A—C18—C17B 27.0 (14)
C11—N6—C12—C13 0.9 (3) C20A—C19A—C18—C19B −46.2 (9)
C16B—N8—C12—N6 25.3 (5) C16A—C17A—C18—C19A −61.9 (12)
C20B—N8—C12—N6 168.6 (4) C16A—C17A—C18—C17B 42.7 (7)
C20A—N8—C12—N6 −157.5 (5) C16A—C17A—C18—C19B −31.3 (13)
C16A—N8—C12—N6 −6.2 (5) C16B—C17B—C18—C19A 33.2 (14)
C16B—N8—C12—C13 −154.1 (5) C16B—C17B—C18—C17A −55.6 (8)
C20B—N8—C12—C13 −10.8 (5) C16B—C17B—C18—C19B 61.3 (12)
C20A—N8—C12—C13 23.1 (6) C20B—C19B—C18—C19A 54.9 (9)
C16A—N8—C12—C13 174.4 (4) C20B—C19B—C18—C17A −31.0 (13)
C14—C13—C12—N6 −0.3 (3) C20B—C19B—C18—C17B −61.6 (12)
C14—C13—C12—N8 179.10 (19) N4—C10—C9—C8 −56.8 (3)
C1—N2—C2—N4 174.23 (18) C10—C9—C8—C7 51.3 (3)
C1—N2—C2—C3 −4.0 (3) C6—C7—C8—C9 −49.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—HN3B···N1i 0.86 (2) 2.19 (2) 3.043 (2) 173.3 (19)
N3—HN3A···N5 0.90 (2) 2.34 (2) 3.210 (2) 162.1 (17)

Symmetry code: (i) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5288).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2004). APEX2, SAINT-Plus, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Patel, R., Desai, K. & Chikhalia, K. (2003). J. Indian Chem. Soc. 80, 138–145.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sreenivasa, S., ManojKumar, K. E., Suchetan, P. A., Srinivasan, T., Palakshamurthy, B. S. & Velmurgan, D. (2012). Acta Cryst. E68, o3371. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812050982/sj5288sup1.cif

e-69-0o197-sup1.cif (34.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050982/sj5288Isup2.hkl

e-69-0o197-Isup2.hkl (181.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812050982/sj5288Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES