Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 9;69(Pt 2):o199. doi: 10.1107/S1600536812052087

(E)-4-Bromo-N-{(E)-3-[(4-bromo-2-methyl­phen­yl)imino]­butan-2-yl­idene}-2-methyl­aniline

Jin-Li Yao a, Xu Zhang a,*, Hong-Yan Li a, Jian-Qing Ye a
PMCID: PMC3569260  PMID: 23424483

Abstract

The title compound, C18H18Br2N2, is centrosymmetric with the mid-point of the central C—C bond of the butyl group located on an inversion center. The terminal benzene ring is approximately perpendicular to the central butyl plane [dihedral angle = 71.9 (8)°]. No hydrogen bonding or aromatic stacking is observed in the crystal.

Related literature  

For applications of diimine-metal catalysts, see: Johnson et al. (1995); Killian et al. (1996); Popeney & Guan (2010); Popeney et al. (2011); Yuan et al. (2005). For a related structure, see: Zhang et al. (2013).graphic file with name e-69-0o199-scheme1.jpg

Experimental  

Crystal data  

  • C18H18Br2N2

  • M r = 422.16

  • Orthorhombic, Inline graphic

  • a = 13.625 (13) Å

  • b = 7.495 (7) Å

  • c = 17.029 (17) Å

  • V = 1739 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.66 mm−1

  • T = 293 K

  • 0.21 × 0.20 × 0.15 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.441, T max = 0.542

  • 6368 measured reflections

  • 1541 independent reflections

  • 847 reflections with I > 2σ(I)

  • R int = 0.104

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.113

  • S = 1.05

  • 1541 reflections

  • 103 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.85 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812052087/xu5666sup1.cif

e-69-0o199-sup1.cif (14.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812052087/xu5666Isup2.hkl

e-69-0o199-Isup2.hkl (76.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812052087/xu5666Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

There is a considerable interest in the development of new late transition metal catalysts for the polymerization of α-olefins since Brookhart discovered highly active α-diimine nickel catalysts (Johnson et al., 1995; Killian et al., 1996). It is well known that the ligand structure had significant influence on the product properties and polymerization activities (Popeney & Guan, 2010; Popeney et al., 2011; Yuan et al., 2005).

In this study, we designed and synthesized the title compound as a bidentate ligand, and its molecular structure was characterized by X-ray diffraction. In the solid state, the ligand exhibits a -1 symmetry. The single bond of 1,4-diazabutadiene fragment is (E)-configured. The dihedral angle between the benzene ring and 1,4-diazabutadiene plane is 71.9 (8)°, similar to that found in a related compound (Zhang et al., 2013). In the crystal packing, there is no hydrogen-bond between the molecules.

Experimental

Formic acid (0.5 ml) was added to a stirred solution of 2,3-butanedione (0.103 g, 1.2 mmol) and 4-bromo-2-methylaniline (0.447 g, 2.4 mmol) in methanol (25 ml). The mixture was refluxed for 24 h, then cooled and the precipitate was separated by filtration. The solid was recrystallized from dichloromethane/cyclohexane (v/v = 6:1), washed with cold ethanol and dried under vacuum to give the title ligand 0.37 g (87%). Anal. Calcd. for C18H18Br2N2: C, 51.21; H, 4.30; N, 6.64. Found: C, 51.18; H, 4.29; N, 6.68. Crystals suitable for X-ray structure determination were grown from a solution of the title compound in a mixture of cyclohexane/dichloromethane (1:4, v/v).

Refinement

All hydrogen atoms were placed in calculated positions with C—H distances of 0.93 and 0.96 Å for aryl and methyl type H-atoms. They were included in the refinement in a riding model approximation, respectively. The H-atoms were assigned Uiso = 1.2 times Ueq of the aryl C atoms and 1.5 times Ueq of the methyl C atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, using 30% probability level ellipsoids.

Crystal data

C18H18Br2N2 F(000) = 840
Mr = 422.16 Dx = 1.612 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 951 reflections
a = 13.625 (13) Å θ = 2.8–20.3°
b = 7.495 (7) Å µ = 4.66 mm1
c = 17.029 (17) Å T = 293 K
V = 1739 (3) Å3 Block, yellow
Z = 4 0.21 × 0.20 × 0.15 mm

Data collection

Bruker APEXII CCD diffractometer 1541 independent reflections
Radiation source: fine-focus sealed tube 847 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.104
φ and ω scans θmax = 25.3°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −15→15
Tmin = 0.441, Tmax = 0.542 k = −9→5
6368 measured reflections l = −20→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0106P)2 + 5.9013P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
1541 reflections Δρmax = 0.70 e Å3
103 parameters Δρmin = −0.85 e Å3
0 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0038 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.30195 (6) 0.23158 (11) 0.40014 (4) 0.0631 (4)
C1 0.4677 (5) 0.4420 (8) 0.2188 (4) 0.0398 (17)
H1 0.5330 0.4728 0.2107 0.048*
C2 0.4386 (5) 0.3772 (9) 0.2914 (4) 0.0444 (19)
H2 0.4836 0.3653 0.3321 0.053*
C3 0.3421 (5) 0.3308 (8) 0.3021 (4) 0.0374 (17)
C4 0.2742 (5) 0.3508 (7) 0.2429 (4) 0.0341 (16)
H4 0.2092 0.3188 0.2518 0.041*
C5 0.3017 (5) 0.4189 (7) 0.1692 (3) 0.0277 (14)
C6 0.3998 (4) 0.4617 (7) 0.1574 (4) 0.0299 (15)
C7 0.4845 (4) 0.4520 (8) 0.0370 (4) 0.0307 (15)
C8 0.5198 (5) 0.2627 (8) 0.0474 (4) 0.0451 (17)
H8A 0.4765 0.2006 0.0825 0.068*
H8B 0.5850 0.2636 0.0689 0.068*
H8C 0.5205 0.2035 −0.0026 0.068*
C9 0.2258 (4) 0.4423 (8) 0.1053 (4) 0.0452 (18)
H9A 0.2541 0.5074 0.0623 0.068*
H9B 0.1706 0.5071 0.1257 0.068*
H9C 0.2045 0.3273 0.0872 0.068*
N1 0.4299 (4) 0.5380 (6) 0.0839 (3) 0.0331 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0619 (6) 0.0768 (6) 0.0505 (5) 0.0068 (5) 0.0143 (4) 0.0208 (5)
C1 0.017 (4) 0.044 (4) 0.058 (5) −0.003 (3) 0.004 (3) 0.006 (4)
C2 0.040 (5) 0.048 (5) 0.045 (4) −0.005 (4) −0.007 (3) 0.004 (4)
C3 0.033 (4) 0.031 (4) 0.048 (4) 0.001 (3) 0.003 (4) 0.000 (3)
C4 0.021 (4) 0.030 (3) 0.051 (4) −0.001 (3) 0.009 (3) −0.002 (3)
C5 0.024 (4) 0.019 (3) 0.041 (4) −0.001 (3) 0.002 (3) −0.001 (3)
C6 0.027 (4) 0.021 (3) 0.042 (4) 0.001 (3) 0.012 (3) 0.000 (3)
C7 0.012 (3) 0.028 (4) 0.052 (4) −0.005 (3) 0.004 (3) 0.008 (3)
C8 0.043 (4) 0.033 (4) 0.060 (4) 0.012 (4) 0.015 (4) 0.012 (3)
C9 0.033 (5) 0.043 (4) 0.059 (5) −0.002 (3) 0.003 (4) 0.003 (4)
N1 0.021 (3) 0.030 (3) 0.048 (4) 0.000 (3) 0.006 (3) 0.006 (3)

Geometric parameters (Å, º)

Br1—C3 1.908 (7) C6—N1 1.436 (7)
C1—C2 1.386 (9) C7—N1 1.268 (7)
C1—C6 1.403 (8) C7—C8 1.509 (8)
C1—H1 0.9300 C7—C7i 1.510 (11)
C2—C3 1.372 (9) C8—H8A 0.9600
C2—H2 0.9300 C8—H8B 0.9600
C3—C4 1.375 (9) C8—H8C 0.9600
C4—C5 1.406 (8) C9—H9A 0.9600
C4—H4 0.9300 C9—H9B 0.9600
C5—C6 1.390 (8) C9—H9C 0.9600
C5—C9 1.512 (8)
C2—C1—C6 120.8 (6) C1—C6—N1 120.2 (5)
C2—C1—H1 119.6 N1—C7—C8 126.2 (5)
C6—C1—H1 119.6 N1—C7—C7i 116.6 (7)
C3—C2—C1 118.8 (6) C8—C7—C7i 117.2 (7)
C3—C2—H2 120.6 C7—C8—H8A 109.5
C1—C2—H2 120.6 C7—C8—H8B 109.5
C2—C3—C4 121.3 (6) H8A—C8—H8B 109.5
C2—C3—Br1 119.3 (5) C7—C8—H8C 109.5
C4—C3—Br1 119.4 (5) H8A—C8—H8C 109.5
C3—C4—C5 120.9 (6) H8B—C8—H8C 109.5
C3—C4—H4 119.5 C5—C9—H9A 109.5
C5—C4—H4 119.5 C5—C9—H9B 109.5
C6—C5—C4 118.0 (6) H9A—C9—H9B 109.5
C6—C5—C9 121.8 (6) C5—C9—H9C 109.5
C4—C5—C9 120.2 (6) H9A—C9—H9C 109.5
C5—C6—C1 120.1 (6) H9B—C9—H9C 109.5
C5—C6—N1 119.5 (6) C7—N1—C6 120.9 (5)
C6—C1—C2—C3 0.6 (10) C4—C5—C6—N1 −177.6 (5)
C1—C2—C3—C4 −1.3 (10) C9—C5—C6—N1 2.9 (8)
C1—C2—C3—Br1 177.3 (5) C2—C1—C6—C5 1.1 (9)
C2—C3—C4—C5 0.3 (9) C2—C1—C6—N1 176.6 (5)
Br1—C3—C4—C5 −178.3 (4) C8—C7—N1—C6 3.9 (10)
C3—C4—C5—C6 1.4 (8) C7i—C7—N1—C6 −177.3 (6)
C3—C4—C5—C9 −179.2 (6) C5—C6—N1—C7 −112.5 (7)
C4—C5—C6—C1 −2.0 (8) C1—C6—N1—C7 71.9 (8)
C9—C5—C6—C1 178.5 (5)

Symmetry code: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5666).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). SAINT and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Johnson, L. K., Killian, C. M. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 6414–6415.
  4. Killian, C. M., Tempel, D. J., Johnson, L. K. & Brookhart, M. (1996). J. Am. Chem. Soc. 118, 11664–11665.
  5. Popeney, C. S. & Guan, Z. B. (2010). Macromolecules, 43, 4091–4097.
  6. Popeney, C. S., Levins, C. M. & Guan, Z. B. (2011). Organometallics, 30, 2432–2452.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Yuan, J.-C., Silva, L. C., Gomes, P. T., Valerga, P., Campos, J. M., Ribeiro, M. R., Chien, J. C. W. & Marques, M. M. (2005). Polymer, 46, 2122–2132.
  9. Zhang, C., Wu, G.-F., Huang, B.-M. & Lu, X.-Q. (2013). Acta Cryst E69, o216. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812052087/xu5666sup1.cif

e-69-0o199-sup1.cif (14.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812052087/xu5666Isup2.hkl

e-69-0o199-Isup2.hkl (76.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812052087/xu5666Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES