Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 9;69(Pt 2):o200. doi: 10.1107/S1600536813000202

1-Ethyl-4-{2-[1-(4-methyl­phen­yl)ethyl­idene]hydrazinyl­idene}-3,4-dihydro-1H-2λ6,1-benzothia­zine-2,2-dione

Muhammad Shafiq a,*, M Nawaz Tahir b, William T A Harrison c, Tanveer Hussain Bokhari a, Muhammad Safder a
PMCID: PMC3569261  PMID: 23424484

Abstract

In the title compound, C19H21N3O2S, the dihedral angle between the aromatic rings is 6.7 (2)° and the C=N—N=C torsion angle is 178.0 (2)°. The conformation of the thia­zine ring is an envelope, with the S atom displaced by 0.802 (2) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.022 Å). In the crystal, mol­ecules are linked by C—H⋯O inter­actions, generating C(5) chains propagating in [010]. A weak C—H⋯π inter­action is also observed.

Related literature  

For the synthesis and biological activity of the title compound and related materials, see: Shafiq et al. (2011a ). For further synthetic details, see: Shafiq et al. (2011b ). For a related structure, see: Shafiq et al. (2013).graphic file with name e-69-0o200-scheme1.jpg

Experimental  

Crystal data  

  • C19H21N3O2S

  • M r = 355.45

  • Monoclinic, Inline graphic

  • a = 15.9018 (10) Å

  • b = 7.3716 (4) Å

  • c = 16.8376 (10) Å

  • β = 111.644 (3)°

  • V = 1834.57 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.34 × 0.26 × 0.24 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.937, T max = 0.955

  • 14168 measured reflections

  • 3597 independent reflections

  • 2598 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.139

  • S = 1.02

  • 3597 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813000202/ld2091sup1.cif

e-69-0o200-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000202/ld2091Isup2.hkl

e-69-0o200-Isup2.hkl (176.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000202/ld2091Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O2i 0.97 2.50 3.402 (4) 155
C9—H9ACg3ii 0.97 2.67 3.613 (2) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MS acknowledges the HEC Pakistan for providing a PhD fellowship and the University of Sargodha for the X-ray diffraction facility.

supplementary crystallographic information

Comment

As a part of our ongoing studies of benzothiazine derivatives with potential biactivity (Shafiq et al., 2011a,b), we now describe the synthesis and structure of the title compound, (I).

The dihedral angle between the C1–C6 and C13–C18 aromatic rings is 6.68 (15)° and the C10=N2—N3=C11 torsion angle is 177.98 (19)°. The conformation of the C1/C6/C9/C10/N1/S1 thiazine ring is an envelope, with the S atom displaced by 0.802 (2) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.022 Å). A very similar conformation was observed in a related structure (Shafiq et al., 2013). Atoms C7 and C8 in (I) are displaced from the mean plane of the thiazine ring by -0.416 (5) and 0.704 (6) Å, respectively.

In the crystal, the moelcules are linked by C—H···O interactions (Table 1) to generate C(5) chains propagating in the b axis direction. A weak C—H···π interaction to the C13—C18 ring also occurs (Table 1).

Experimental

4-Hydrazinylidene-1-ethyl-3H-2?6,1-benzothiazine-2,2-dione (Shafiq et al., 2011b) was reacted with para-methyl acetophenone according to literature procedure (Shafiq, et al., 2011a). The product obtained was re-crystallized from ethyl acetate solution to yield yellow prisms.

Refinement

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding. The methyl group was allowed to rotate, but not to tip, to best fit the electron density. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C) was applied.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.

Crystal data

C19H21N3O2S F(000) = 752
Mr = 355.45 Dx = 1.287 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 335 reflections
a = 15.9018 (10) Å θ = 3.1–23.5°
b = 7.3716 (4) Å µ = 0.19 mm1
c = 16.8376 (10) Å T = 296 K
β = 111.644 (3)° Prism, yellow
V = 1834.57 (19) Å3 0.34 × 0.26 × 0.24 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3597 independent reflections
Radiation source: fine-focus sealed tube 2598 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
ω scans θmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −19→18
Tmin = 0.937, Tmax = 0.955 k = −9→8
14168 measured reflections l = −18→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.6783P] where P = (Fo2 + 2Fc2)/3
3597 reflections (Δ/σ)max = 0.001
229 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.53653 (13) 0.1072 (3) 0.23121 (12) 0.0401 (5)
C2 0.62165 (14) 0.1299 (3) 0.22572 (14) 0.0504 (6)
H2 0.6306 0.2260 0.1940 0.060*
C3 0.69200 (16) 0.0146 (4) 0.26570 (16) 0.0610 (7)
H3 0.7478 0.0324 0.2609 0.073*
C4 0.67962 (16) −0.1279 (4) 0.31306 (17) 0.0629 (7)
H4 0.7274 −0.2057 0.3411 0.076*
C5 0.59694 (17) −0.1552 (3) 0.31882 (16) 0.0609 (7)
H5 0.5891 −0.2528 0.3504 0.073*
C6 0.52430 (14) −0.0399 (3) 0.27836 (14) 0.0460 (5)
C7 0.4152 (2) −0.2572 (4) 0.3072 (2) 0.0795 (9)
H7A 0.3511 −0.2787 0.2768 0.095*
H7B 0.4483 −0.3488 0.2894 0.095*
C8 0.4360 (3) −0.2746 (6) 0.3986 (3) 0.1315 (16)
H8A 0.4972 −0.2366 0.4293 0.197*
H8B 0.4290 −0.3989 0.4121 0.197*
H8C 0.3954 −0.1999 0.4147 0.197*
C9 0.37033 (14) 0.2050 (3) 0.18892 (14) 0.0478 (5)
H9A 0.3372 0.1275 0.1410 0.057*
H9B 0.3380 0.3191 0.1820 0.057*
C10 0.46398 (13) 0.2394 (3) 0.18915 (12) 0.0411 (5)
C11 0.43384 (14) 0.6397 (3) 0.08403 (13) 0.0451 (5)
C12 0.52607 (16) 0.6781 (3) 0.08357 (17) 0.0603 (6)
H12A 0.5486 0.7891 0.1138 0.090*
H12B 0.5226 0.6896 0.0257 0.090*
H12C 0.5661 0.5804 0.1110 0.090*
C13 0.36016 (14) 0.7729 (3) 0.04561 (13) 0.0443 (5)
C14 0.36872 (17) 0.9137 (3) −0.00555 (15) 0.0558 (6)
H14 0.4221 0.9255 −0.0157 0.067*
C15 0.30017 (17) 1.0357 (4) −0.04138 (15) 0.0620 (7)
H15 0.3081 1.1287 −0.0753 0.074*
C16 0.21992 (17) 1.0238 (3) −0.02836 (14) 0.0553 (6)
C17 0.21100 (16) 0.8847 (3) 0.02377 (14) 0.0532 (6)
H17 0.1578 0.8748 0.0344 0.064*
C18 0.27955 (15) 0.7613 (3) 0.05990 (13) 0.0497 (5)
H18 0.2719 0.6691 0.0943 0.060*
C19 0.1445 (2) 1.1567 (5) −0.0695 (2) 0.0903 (10)
H19A 0.1632 1.2757 −0.0467 0.135*
H19B 0.0920 1.1212 −0.0580 0.135*
H19C 0.1301 1.1580 −0.1302 0.135*
S1 0.37561 (4) 0.10183 (9) 0.28376 (4) 0.0544 (2)
O1 0.42132 (12) 0.2209 (3) 0.35183 (11) 0.0773 (6)
O2 0.28939 (11) 0.0333 (3) 0.27645 (13) 0.0771 (6)
N1 0.43901 (13) −0.0742 (3) 0.28385 (14) 0.0600 (6)
N2 0.48467 (12) 0.3786 (3) 0.15443 (12) 0.0536 (5)
N3 0.41244 (13) 0.4972 (3) 0.11660 (12) 0.0546 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0382 (11) 0.0417 (12) 0.0417 (10) 0.0006 (9) 0.0160 (8) −0.0016 (9)
C2 0.0434 (12) 0.0530 (14) 0.0597 (13) 0.0020 (10) 0.0248 (10) 0.0066 (11)
C3 0.0432 (13) 0.0687 (17) 0.0777 (16) 0.0086 (11) 0.0300 (12) 0.0084 (14)
C4 0.0482 (14) 0.0678 (17) 0.0753 (16) 0.0203 (12) 0.0257 (12) 0.0186 (13)
C5 0.0576 (15) 0.0597 (16) 0.0716 (15) 0.0152 (12) 0.0311 (12) 0.0236 (13)
C6 0.0406 (12) 0.0484 (13) 0.0526 (12) 0.0046 (9) 0.0214 (9) 0.0069 (10)
C7 0.0672 (18) 0.071 (2) 0.109 (2) −0.0089 (14) 0.0431 (17) 0.0118 (17)
C8 0.167 (4) 0.132 (4) 0.138 (3) 0.049 (3) 0.105 (3) 0.063 (3)
C9 0.0376 (11) 0.0468 (13) 0.0555 (12) 0.0009 (9) 0.0132 (9) 0.0071 (10)
C10 0.0383 (11) 0.0425 (12) 0.0425 (10) 0.0002 (9) 0.0146 (9) 0.0005 (9)
C11 0.0472 (12) 0.0440 (13) 0.0459 (11) −0.0017 (9) 0.0194 (9) 0.0027 (10)
C12 0.0517 (14) 0.0525 (15) 0.0792 (16) −0.0029 (11) 0.0272 (12) 0.0070 (13)
C13 0.0477 (12) 0.0415 (12) 0.0425 (10) −0.0024 (9) 0.0150 (9) 0.0020 (9)
C14 0.0538 (14) 0.0563 (15) 0.0589 (13) −0.0025 (11) 0.0227 (11) 0.0149 (11)
C15 0.0665 (16) 0.0588 (16) 0.0601 (14) 0.0018 (12) 0.0226 (12) 0.0227 (12)
C16 0.0605 (15) 0.0522 (14) 0.0467 (12) 0.0083 (11) 0.0122 (11) 0.0093 (11)
C17 0.0489 (13) 0.0597 (15) 0.0511 (12) 0.0041 (11) 0.0186 (10) 0.0026 (11)
C18 0.0528 (13) 0.0472 (13) 0.0492 (12) −0.0005 (10) 0.0191 (10) 0.0074 (10)
C19 0.083 (2) 0.099 (2) 0.089 (2) 0.0348 (18) 0.0322 (17) 0.0373 (19)
S1 0.0401 (3) 0.0653 (4) 0.0638 (4) 0.0066 (3) 0.0262 (3) 0.0137 (3)
O1 0.0671 (12) 0.1064 (16) 0.0636 (10) 0.0069 (10) 0.0302 (9) −0.0119 (10)
O2 0.0449 (10) 0.0878 (13) 0.1101 (15) 0.0094 (9) 0.0422 (10) 0.0334 (11)
N1 0.0461 (11) 0.0570 (13) 0.0836 (14) 0.0062 (9) 0.0316 (10) 0.0266 (11)
N2 0.0456 (11) 0.0509 (12) 0.0679 (12) 0.0070 (8) 0.0251 (9) 0.0179 (10)
N3 0.0481 (11) 0.0499 (12) 0.0687 (12) 0.0076 (9) 0.0249 (9) 0.0193 (10)

Geometric parameters (Å, º)

C1—C6 1.399 (3) C11—N3 1.287 (3)
C1—C2 1.400 (3) C11—C13 1.482 (3)
C1—C10 1.477 (3) C11—C12 1.497 (3)
C2—C3 1.368 (3) C12—H12A 0.9600
C2—H2 0.9300 C12—H12B 0.9600
C3—C4 1.376 (3) C12—H12C 0.9600
C3—H3 0.9300 C13—C14 1.387 (3)
C4—C5 1.368 (3) C13—C18 1.391 (3)
C4—H4 0.9300 C14—C15 1.370 (3)
C5—C6 1.393 (3) C14—H14 0.9300
C5—H5 0.9300 C15—C16 1.375 (3)
C6—N1 1.416 (3) C15—H15 0.9300
C7—C8 1.456 (5) C16—C17 1.391 (3)
C7—N1 1.493 (3) C16—C19 1.505 (3)
C7—H7A 0.9700 C17—C18 1.377 (3)
C7—H7B 0.9700 C17—H17 0.9300
C8—H8A 0.9600 C18—H18 0.9300
C8—H8B 0.9600 C19—H19A 0.9600
C8—H8C 0.9600 C19—H19B 0.9600
C9—C10 1.509 (3) C19—H19C 0.9600
C9—S1 1.742 (2) S1—O1 1.4135 (19)
C9—H9A 0.9700 S1—O2 1.4233 (17)
C9—H9B 0.9700 S1—N1 1.643 (2)
C10—N2 1.282 (3) N2—N3 1.397 (2)
C6—C1—C2 118.04 (19) C11—C12—H12A 109.5
C6—C1—C10 122.43 (18) C11—C12—H12B 109.5
C2—C1—C10 119.52 (19) H12A—C12—H12B 109.5
C3—C2—C1 121.9 (2) C11—C12—H12C 109.5
C3—C2—H2 119.1 H12A—C12—H12C 109.5
C1—C2—H2 119.1 H12B—C12—H12C 109.5
C2—C3—C4 119.6 (2) C14—C13—C18 117.4 (2)
C2—C3—H3 120.2 C14—C13—C11 121.6 (2)
C4—C3—H3 120.2 C18—C13—C11 120.97 (19)
C5—C4—C3 120.0 (2) C15—C14—C13 121.4 (2)
C5—C4—H4 120.0 C15—C14—H14 119.3
C3—C4—H4 120.0 C13—C14—H14 119.3
C4—C5—C6 121.4 (2) C14—C15—C16 121.5 (2)
C4—C5—H5 119.3 C14—C15—H15 119.3
C6—C5—H5 119.3 C16—C15—H15 119.3
C5—C6—C1 119.1 (2) C15—C16—C17 117.7 (2)
C5—C6—N1 120.1 (2) C15—C16—C19 120.9 (2)
C1—C6—N1 120.82 (18) C17—C16—C19 121.4 (2)
C8—C7—N1 112.2 (3) C18—C17—C16 121.2 (2)
C8—C7—H7A 109.2 C18—C17—H17 119.4
N1—C7—H7A 109.2 C16—C17—H17 119.4
C8—C7—H7B 109.2 C17—C18—C13 120.9 (2)
N1—C7—H7B 109.2 C17—C18—H18 119.6
H7A—C7—H7B 107.9 C13—C18—H18 119.6
C7—C8—H8A 109.5 C16—C19—H19A 109.5
C7—C8—H8B 109.5 C16—C19—H19B 109.5
H8A—C8—H8B 109.5 H19A—C19—H19B 109.5
C7—C8—H8C 109.5 C16—C19—H19C 109.5
H8A—C8—H8C 109.5 H19A—C19—H19C 109.5
H8B—C8—H8C 109.5 H19B—C19—H19C 109.5
C10—C9—S1 110.92 (14) O1—S1—O2 118.78 (12)
C10—C9—H9A 109.5 O1—S1—N1 110.96 (11)
S1—C9—H9A 109.5 O2—S1—N1 106.91 (11)
C10—C9—H9B 109.5 O1—S1—C9 107.98 (12)
S1—C9—H9B 109.5 O2—S1—C9 110.88 (10)
H9A—C9—H9B 108.0 N1—S1—C9 99.65 (11)
N2—C10—C1 117.42 (19) C6—N1—C7 121.4 (2)
N2—C10—C9 123.51 (19) C6—N1—S1 117.47 (16)
C1—C10—C9 119.07 (18) C7—N1—S1 119.90 (17)
N3—C11—C13 115.83 (19) C10—N2—N3 113.76 (18)
N3—C11—C12 124.8 (2) C11—N3—N2 113.78 (19)
C13—C11—C12 119.40 (19)
C6—C1—C2—C3 −0.8 (3) C15—C16—C17—C18 −1.1 (3)
C10—C1—C2—C3 177.9 (2) C19—C16—C17—C18 178.7 (2)
C1—C2—C3—C4 −0.2 (4) C16—C17—C18—C13 0.3 (3)
C2—C3—C4—C5 1.0 (4) C14—C13—C18—C17 0.5 (3)
C3—C4—C5—C6 −0.8 (4) C11—C13—C18—C17 −179.7 (2)
C4—C5—C6—C1 −0.3 (4) C10—C9—S1—O1 61.17 (18)
C4—C5—C6—N1 178.5 (2) C10—C9—S1—O2 −167.11 (16)
C2—C1—C6—C5 1.1 (3) C10—C9—S1—N1 −54.73 (18)
C10—C1—C6—C5 −177.7 (2) C5—C6—N1—C7 −19.6 (4)
C2—C1—C6—N1 −177.7 (2) C1—C6—N1—C7 159.1 (2)
C10—C1—C6—N1 3.6 (3) C5—C6—N1—S1 147.7 (2)
C6—C1—C10—N2 173.5 (2) C1—C6—N1—S1 −33.5 (3)
C2—C1—C10—N2 −5.2 (3) C8—C7—N1—C6 92.8 (3)
C6—C1—C10—C9 −6.5 (3) C8—C7—N1—S1 −74.3 (3)
C2—C1—C10—C9 174.75 (19) O1—S1—N1—C6 −57.8 (2)
S1—C9—C10—N2 −144.76 (19) O2—S1—N1—C6 171.25 (17)
S1—C9—C10—C1 35.3 (2) C9—S1—N1—C6 55.80 (19)
N3—C11—C13—C14 −167.5 (2) O1—S1—N1—C7 109.8 (2)
C12—C11—C13—C14 13.1 (3) O2—S1—N1—C7 −21.2 (2)
N3—C11—C13—C18 12.7 (3) C9—S1—N1—C7 −136.6 (2)
C12—C11—C13—C18 −166.7 (2) C1—C10—N2—N3 −179.62 (17)
C18—C13—C14—C15 −0.7 (3) C9—C10—N2—N3 0.4 (3)
C11—C13—C14—C15 179.6 (2) C13—C11—N3—N2 −178.06 (18)
C13—C14—C15—C16 −0.1 (4) C12—C11—N3—N2 1.3 (3)
C14—C15—C16—C17 1.0 (4) C10—N2—N3—C11 177.98 (19)
C14—C15—C16—C19 −178.8 (3)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C13–C18 ring.

D—H···A D—H H···A D···A D—H···A
C7—H7A···O2i 0.97 2.50 3.402 (4) 155
C9—H9A···Cg3ii 0.97 2.67 3.613 (2) 165

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2091).

References

  1. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Shafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011b). Asian J. Chem. 23, 2101–2106.
  4. Shafiq, M., Tahir, M. N., Harrison, W. T. A., Khan, I. U. & Shafique, S. (2013). Acta Cryst. E69, o165. [DOI] [PMC free article] [PubMed]
  5. Shafiq, M., Zia-Ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011a). J. Chilean Chem. Soc. 56, 527–531.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813000202/ld2091sup1.cif

e-69-0o200-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000202/ld2091Isup2.hkl

e-69-0o200-Isup2.hkl (176.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000202/ld2091Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES