Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 9;69(Pt 2):o205. doi: 10.1107/S1600536812051896

tert-Butyl 4-(3,4-dichloro­anilino)piperidine-1-carboxyl­ate

Mehr-un-Nisa a, Munawar Ali Munawar a, Gabriel B Hall b, Sue A Roberts b,*, Victor J Hruby b
PMCID: PMC3569265  PMID: 23424488

Abstract

In the title compound, C16H22Cl2N2O2, the substituted piperidine ring adopts a chair conformation with both substituents in equatorial positions. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds connect mol­ecules into ribbons along the a-axis direction.

Related literature  

For the biological activity of piperazine derivatives, see: Hamed et al. (2012); Joergen et al. (1997); Peter et al. (2009). For the synthesis of the title compound, see: Vardanyan et al. (2009).graphic file with name e-69-0o205-scheme1.jpg

Experimental  

Crystal data  

  • C16H22Cl2N2O2

  • M r = 345.25

  • Orthorhombic, Inline graphic

  • a = 9.7825 (6) Å

  • b = 10.6075 (6) Å

  • c = 16.8215 (10) Å

  • V = 1745.53 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 100 K

  • 0.40 × 0.40 × 0.30 mm

Data collection  

  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.662, T max = 0.749

  • 34136 measured reflections

  • 13197 independent reflections

  • 11079 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.079

  • S = 1.00

  • 13197 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983), 6110 Friedel pairs

  • Flack parameter: −0.01 (2)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812051896/zl2529sup1.cif

e-69-0o205-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051896/zl2529Isup2.hkl

e-69-0o205-Isup2.hkl (645.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051896/zl2529Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 2.12 2.9740 (8) 163
C3—H3⋯O2i 0.95 2.58 3.3486 (9) 138

Symmetry code: (i) Inline graphic.

Acknowledgments

We gratefully acknowledge a grant from the Higher Education Commission of Pakistan under the IRSIP programme to support PhD students. The Bruker Kappa APEXII DUO was purchased with funding from NSF grant CHE-0741837. The work was supported in part by grants from the US Public Health Service and National Institutes of Health (DA06284 and DA13449).

supplementary crystallographic information

Comment

Piperazine derivatives have been shown to inhibit re-uptake of the monoamines dopamine, noradrenaline and serotonin in synaptosomes (Joergen et al., 1997), and their use for the treatment of protozoal infections, particularly malaria, has also been reported (Hamed et al., 2012). Selective serotonin reuptake inhibitors (SSRI) provide efficacy in the treatment of numerous CNS disorders, including depression and panic disorders, and are usually observed to be effective, well tolerated and simply administered (Peter et al., 2009)). During our search to find new synthetic novel multivalent ligands for the treatment of pain and depression, the title compound was synthesized as an intermediate. Compounds prepared from this intermediate are now under study for possible opioid and SSRIs activities.

The piperidine ring is in a chair conformation with both substituents in equatorial positions. An intermolecular hydrogen bond is present between N1—H1 and O2 with a donor-hydrogen-acceptor angle of 163.40° and a donor-aceptor distance of 2.9740 (8) Å. Hydrogen bonds connect molecules into ribbons extending in the crystallographic a direction. The hydrogen bonding graph set is C1,1(8)a.

Experimental

tert-Butyl 4-((3,4-dichlorophenyl)amino)piperidine-1-carboxylate (1) was synthesized by modification of a reported method (Vardanyan et al., 2009) by refluxing N-Boc-4-piperidone (5.0 g, 25.1 mmol) and 3,4-dichloroaniline (4.07 g, 25.1 mmol) in toluene (100 ml) with a catalytic amount of p-toluene sulphonic acid using a Dean and Stark apparatus for 4–5 h. The reaction was left to cool overnight. Toluene was evaporated under reduced pressure. The crude product was dissolved in diethyl ether, passed through a bed of neutral alumina, and the ether evaporated under reduced pressure. The residue was dissolved in CH3OH (50 ml) and NaBH4 (1.05 g, 27.6 mmol) was added slowly at room temperature. The reaction mixture was left to stir overnight. The reaction was quenched with aqueous NaHCO3 (5 ml). The solvent was removed under reduced pressure and the residue was dissolved in diethyl ether, dried over anhydrous MgSO4, filtered and evaporated under reduced pressure. The residue was recrystallized from CH3OH to obtain (1) as a white crystalline solid. Crystals appropriate for X-ray diffraction were grown from methanol by slow evaporation at room temperature. 8.22 g (95%) yield; m.p. 155–157 °C; MS (ESI): m/z: [M+H]+: 345; HRMS: Calcd for C16H23Cl2N2O2: 345.113; found: 345.1131.

Refinement

All hydrogen atoms were visible in a difference Fourier map and were added at calculated positions. Bond distances are set to 0.95 Å for carbon-hydrogen bonds, and 0.88 Å for nitrogen-hydrogen bonds. Thermal parameters for hydrogen atoms were set to 1.2 times the isotropic equivalent thermal parameter of the atom to which the hydrogen atom is bonded.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Anisotropically refined atoms are shown as 50% probability ellipsoids.

Fig. 2.

Fig. 2.

Hydrogen bonding interactions, shown as dashed lines. The molecules are connected into a chain running along the a direction in the crystal.

Crystal data

C16H22Cl2N2O2 Dx = 1.302 Mg m3
Mr = 345.25 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 9939 reflections
a = 9.7825 (6) Å θ = 2.8–40.0°
b = 10.6075 (6) Å µ = 0.38 mm1
c = 16.8215 (10) Å T = 100 K
V = 1745.53 (18) Å3 Rod, clear colourless
Z = 4 0.40 × 0.40 × 0.30 mm
F(000) = 728

Data collection

Bruker Kappa APEXII DUO CCD diffractometer 13197 independent reflections
Radiation source: fine-focus sealed tube 11079 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
Detector resolution: 8.3333 pixels mm-1 θmax = 43.7°, θmin = 2.3°
φ and ω scans h = −19→17
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −20→15
Tmin = 0.662, Tmax = 0.749 l = −32→22
34136 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.1129P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.002
13197 reflections Δρmax = 0.44 e Å3
202 parameters Δρmin = −0.19 e Å3
0 restraints Absolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.01 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.08164 (2) 0.97197 (2) 0.972015 (11) 0.02294 (4)
Cl2 0.13863 (19) 0.75577 (18) 0.941766 (10) 0.01982 (3)
O1 0.10534 (5) 0.83348 (5) 0.29230 (3) 0.01589 (9)
O2 −0.11737 (5) 0.79311 (6) 0.32343 (3) 0.01988 (10)
C14 0.06777 (12) 0.63102 (8) 0.22473 (6) 0.03006 (19)
H14A 0.1276 0.595 0.2655 0.045*
H14B 0.0822 0.5867 0.1743 0.045*
H14C −0.0278 0.6217 0.2412 0.045*
C3 0.13364 (7) 0.82954 (6) 0.78917 (4) 0.01425 (10)
H3 0.2006 0.7658 0.7815 0.017*
C13 0.10078 (8) 0.77016 (7) 0.21416 (4) 0.01681 (11)
C12 −0.00406 (7) 0.83543 (6) 0.34047 (4) 0.01344 (10)
N2 0.02566 (6) 0.89021 (6) 0.41112 (4) 0.01450 (9)
C10 0.15552 (7) 0.95171 (7) 0.43015 (4) 0.01648 (11)
H10A 0.1433 1.0444 0.4296 0.02*
H10B 0.2247 0.9295 0.3895 0.02*
C11 0.20526 (7) 0.90986 (8) 0.51199 (4) 0.01733 (12)
H11A 0.2881 0.9585 0.5263 0.021*
H11B 0.2306 0.8196 0.5099 0.021*
C7 0.09632 (7) 0.92909 (7) 0.57613 (4) 0.01480 (10)
H7 0.0784 1.0215 0.5816 0.018*
N1 0.14933 (7) 0.88223 (7) 0.65131 (4) 0.01898 (11)
H1 0.2255 0.8381 0.6502 0.023*
C4 0.08893 (7) 0.90197 (6) 0.72395 (4) 0.01433 (10)
C5 −0.01262 (8) 0.99380 (7) 0.73731 (4) 0.01686 (12)
H5 −0.0468 1.0417 0.6939 0.02*
C6 −0.06310 (7) 1.01490 (7) 0.81332 (4) 0.01730 (11)
H6 −0.1303 1.0783 0.8215 0.021*
C1 −0.01660 (7) 0.94440 (7) 0.87772 (4) 0.01538 (11)
C2 0.08092 (7) 0.85036 (6) 0.86435 (4) 0.01397 (10)
C9 −0.08241 (7) 0.91113 (7) 0.46944 (4) 0.01573 (10)
H9A −0.1662 0.8659 0.4528 0.019*
H9B −0.1039 1.0022 0.4724 0.019*
C8 −0.03699 (7) 0.86400 (7) 0.55099 (4) 0.01653 (11)
H8A −0.0228 0.7716 0.549 0.02*
H8B −0.1092 0.8818 0.5906 0.02*
C16 0.24662 (8) 0.78782 (8) 0.18424 (5) 0.02256 (14)
H16A 0.2688 0.8779 0.1832 0.034*
H16B 0.2547 0.753 0.1305 0.034*
H16C 0.3101 0.7439 0.2198 0.034*
C15 0.00084 (9) 0.83714 (10) 0.15914 (5) 0.02569 (16)
H15A −0.0908 0.8352 0.1826 0.039*
H15B −0.0007 0.7944 0.1075 0.039*
H15C 0.0297 0.9249 0.1519 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.01965 (7) 0.03505 (10) 0.01412 (7) 0.00661 (7) 0.00311 (6) 0.00055 (6)
Cl2 0.02267 (7) 0.02154 (7) 0.01526 (6) 0.00232 (6) −0.00074 (6) 0.00598 (6)
O1 0.0154 (2) 0.0189 (2) 0.01340 (19) −0.00364 (16) 0.00210 (15) −0.00379 (17)
O2 0.0162 (2) 0.0272 (3) 0.0163 (2) −0.00867 (19) −0.00053 (17) −0.00255 (19)
C14 0.0419 (5) 0.0163 (3) 0.0320 (4) −0.0073 (3) 0.0078 (4) −0.0062 (3)
C3 0.0142 (2) 0.0149 (2) 0.0137 (2) 0.0010 (2) −0.0004 (2) 0.0009 (2)
C13 0.0203 (3) 0.0166 (3) 0.0135 (2) −0.0034 (2) 0.0022 (2) −0.0035 (2)
C12 0.0144 (2) 0.0139 (2) 0.0120 (2) −0.0024 (2) −0.00017 (19) 0.00076 (19)
N2 0.0122 (2) 0.0189 (2) 0.0124 (2) −0.00349 (18) 0.00084 (17) −0.00202 (18)
C10 0.0145 (2) 0.0219 (3) 0.0131 (2) −0.0061 (2) −0.0004 (2) 0.0001 (2)
C11 0.0132 (2) 0.0253 (3) 0.0135 (3) 0.0000 (2) −0.0002 (2) −0.0005 (2)
C7 0.0151 (2) 0.0174 (3) 0.0119 (2) 0.0014 (2) −0.00057 (19) 0.0005 (2)
N1 0.0201 (3) 0.0252 (3) 0.0116 (2) 0.0098 (2) 0.0005 (2) 0.0014 (2)
C4 0.0145 (2) 0.0160 (2) 0.0124 (2) 0.0019 (2) 0.0001 (2) 0.00067 (19)
C5 0.0173 (3) 0.0190 (3) 0.0142 (3) 0.0052 (2) 0.0003 (2) 0.0022 (2)
C6 0.0166 (3) 0.0199 (3) 0.0155 (3) 0.0044 (2) 0.0011 (2) 0.0010 (2)
C1 0.0140 (2) 0.0188 (3) 0.0133 (2) 0.0005 (2) 0.0013 (2) 0.0004 (2)
C2 0.0135 (2) 0.0150 (2) 0.0134 (2) −0.0005 (2) −0.0013 (2) 0.00250 (19)
C9 0.0132 (2) 0.0197 (3) 0.0143 (2) −0.0003 (2) 0.0008 (2) −0.0017 (2)
C8 0.0159 (3) 0.0197 (3) 0.0140 (3) −0.0014 (2) 0.0024 (2) 0.0007 (2)
C16 0.0219 (3) 0.0250 (3) 0.0208 (3) −0.0014 (3) 0.0062 (3) −0.0042 (3)
C15 0.0246 (3) 0.0378 (4) 0.0147 (3) 0.0000 (3) −0.0006 (3) 0.0007 (3)

Geometric parameters (Å, º)

Cl1—C1 1.7338 (7) C7—N1 1.4544 (9)
Cl2—C2 1.7382 (7) C7—C8 1.5350 (10)
O1—C12 1.3425 (8) C7—H7 1.0
O1—C13 1.4767 (8) N1—C4 1.3734 (9)
O2—C12 1.2298 (8) N1—H1 0.88
C14—C13 1.5213 (11) C4—C5 1.4093 (10)
C14—H14A 0.98 C5—C6 1.3888 (10)
C14—H14B 0.98 C5—H5 0.95
C14—H14C 0.98 C6—C1 1.3928 (10)
C3—C2 1.3835 (10) C6—H6 0.95
C3—C4 1.4090 (9) C1—C2 1.3984 (10)
C3—H3 0.95 C9—C8 1.5261 (10)
C13—C15 1.5223 (12) C9—H9A 0.99
C13—C16 1.5244 (11) C9—H9B 0.99
C12—N2 1.3545 (9) C8—H8A 0.99
N2—C9 1.4592 (9) C8—H8B 0.99
N2—C10 1.4635 (9) C16—H16A 0.98
C10—C11 1.5260 (10) C16—H16B 0.98
C10—H10A 0.99 C16—H16C 0.98
C10—H10B 0.99 C15—H15A 0.98
C11—C7 1.5302 (10) C15—H15B 0.98
C11—H11A 0.99 C15—H15C 0.98
C11—H11B 0.99
C12—O1—C13 121.34 (5) C4—N1—H1 117.7
C13—C14—H14A 109.5 C7—N1—H1 117.7
C13—C14—H14B 109.5 N1—C4—C3 118.43 (6)
H14A—C14—H14B 109.5 N1—C4—C5 123.40 (6)
C13—C14—H14C 109.5 C3—C4—C5 118.14 (6)
H14A—C14—H14C 109.5 C6—C5—C4 120.58 (6)
H14B—C14—H14C 109.5 C6—C5—H5 119.7
C2—C3—C4 120.59 (6) C4—C5—H5 119.7
C2—C3—H3 119.7 C5—C6—C1 120.90 (7)
C4—C3—H3 119.7 C5—C6—H6 119.6
O1—C13—C15 110.38 (6) C1—C6—H6 119.6
O1—C13—C16 102.11 (6) C6—C1—C2 118.73 (6)
C15—C13—C16 110.06 (7) C6—C1—Cl1 120.08 (5)
O1—C13—C14 110.10 (6) C2—C1—Cl1 121.19 (5)
C15—C13—C14 112.80 (7) C3—C2—C1 121.01 (6)
C16—C13—C14 110.89 (7) C3—C2—Cl2 118.14 (5)
O2—C12—O1 124.91 (6) C1—C2—Cl2 120.85 (5)
O2—C12—N2 123.67 (6) N2—C9—C8 110.10 (6)
O1—C12—N2 111.42 (6) N2—C9—H9A 109.6
C12—N2—C9 119.98 (6) C8—C9—H9A 109.6
C12—N2—C10 124.71 (6) N2—C9—H9B 109.6
C9—N2—C10 114.45 (6) C8—C9—H9B 109.6
N2—C10—C11 110.14 (6) H9A—C9—H9B 108.2
N2—C10—H10A 109.6 C9—C8—C7 110.34 (6)
C11—C10—H10A 109.6 C9—C8—H8A 109.6
N2—C10—H10B 109.6 C7—C8—H8A 109.6
C11—C10—H10B 109.6 C9—C8—H8B 109.6
H10A—C10—H10B 108.1 C7—C8—H8B 109.6
C10—C11—C7 112.04 (6) H8A—C8—H8B 108.1
C10—C11—H11A 109.2 C13—C16—H16A 109.5
C7—C11—H11A 109.2 C13—C16—H16B 109.5
C10—C11—H11B 109.2 H16A—C16—H16B 109.5
C7—C11—H11B 109.2 C13—C16—H16C 109.5
H11A—C11—H11B 107.9 H16A—C16—H16C 109.5
N1—C7—C11 108.61 (6) H16B—C16—H16C 109.5
N1—C7—C8 112.88 (6) C13—C15—H15A 109.5
C11—C7—C8 109.72 (6) C13—C15—H15B 109.5
N1—C7—H7 108.5 H15A—C15—H15B 109.5
C11—C7—H7 108.5 C13—C15—H15C 109.5
C8—C7—H7 108.5 H15A—C15—H15C 109.5
C4—N1—C7 124.62 (6) H15B—C15—H15C 109.5
C12—O1—C13—C15 65.40 (8) C2—C3—C4—N1 176.69 (7)
C12—O1—C13—C16 −177.61 (6) C2—C3—C4—C5 −1.34 (10)
C12—O1—C13—C14 −59.79 (9) N1—C4—C5—C6 −175.62 (7)
C13—O1—C12—O2 −4.42 (11) C3—C4—C5—C6 2.31 (11)
C13—O1—C12—N2 175.50 (6) C4—C5—C6—C1 −1.23 (12)
O2—C12—N2—C9 −5.18 (11) C5—C6—C1—C2 −0.86 (11)
O1—C12—N2—C9 174.90 (6) C5—C6—C1—Cl1 −179.73 (6)
O2—C12—N2—C10 −174.00 (7) C4—C3—C2—C1 −0.72 (11)
O1—C12—N2—C10 6.08 (10) C4—C3—C2—Cl2 178.95 (5)
C12—N2—C10—C11 −134.30 (7) C6—C1—C2—C3 1.83 (11)
C9—N2—C10—C11 56.33 (8) Cl1—C1—C2—C3 −179.31 (6)
N2—C10—C11—C7 −53.30 (8) C6—C1—C2—Cl2 −177.83 (6)
C10—C11—C7—N1 177.63 (6) Cl1—C1—C2—Cl2 1.03 (9)
C10—C11—C7—C8 53.82 (8) C12—N2—C9—C8 131.49 (7)
C11—C7—N1—C4 169.17 (7) C10—N2—C9—C8 −58.59 (8)
C8—C7—N1—C4 −68.92 (9) N2—C9—C8—C7 56.87 (7)
C7—N1—C4—C3 166.47 (7) N1—C7—C8—C9 −176.41 (6)
C7—N1—C4—C5 −15.61 (12) C11—C7—C8—C9 −55.13 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.88 2.12 2.9740 (8) 163
C3—H3···O2i 0.95 2.58 3.3486 (9) 138

Symmetry code: (i) x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2529).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Hamed, A., Christoph, B., Olivier, C., Bibia, H. & Romain, S. (2012). US Patent Appl. 2012316178.
  5. Joergen, S.-K., Peter, M. & Frank, W. (1997). World Patent WO9730997.
  6. Peter, D., Eriksen, B. L., Munro, G. & Nielsen, E. (2009). World Patent WO 2009/077585.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Vardanyan, R., Vijay, G., Nichol, G. S., Liu, L., Kumarasinghe, I., Davis, P., Vanderah, T., Porreca, F., Lai, J. & Hruby, V. J. (2009). Bioorg. Med. Chem. 14, 5044–5053. [DOI] [PMC free article] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812051896/zl2529sup1.cif

e-69-0o205-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051896/zl2529Isup2.hkl

e-69-0o205-Isup2.hkl (645.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051896/zl2529Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES