Abstract
We present the complete nucleotide sequence of the multipartite genome of Sinorhizobium/Ensifer meliloti GR4, a predominant rhizobial strain in an agricultural field site. The genome (total size, 7.14 Mb) consists of five replicons: one chromosome, two expected symbiotic megaplasmids (pRmeGR4c and pRmeGR4d), and two accessory plasmids (pRmeGR4a and pRmeGR4b).
GENOME ANNOUNCEMENT
The primary source of biologically fixed nitrogen in crops is found in the symbiotic interaction between legume plants and certain soil microorganisms, collectively referred to as rhizobia (1). Sinorhizobium bacteria are the microsymbionts of Medicago (e.g., Medicago sativa and Medicago truncatula), Melilotus, and Trigonella legume species.
The genome sequences of four Sinorhizobium meliloti strains are publicly available (2–4). S. meliloti GR4 was isolated as the predominant rhizobial strain (i.e., nearly 50% of the isolates) from an agricultural field with a well-documented crop history in Granada, Spain (5, 6). Besides the chromosome and the expected symbiotic megaplasmids (pRmeGR4c and pRmeGR4d), this strain harbors two accessory plasmids, designated pRmeGR4a and pRmeGR4b. The latter contains a region that was identified as the genetic determinant of the particularly high competitiveness for nodulation on alfalfa roots along with a plethora of mobile genetic elements (7–10).
A highly pure genomic DNA sample of S. meliloti GR4 was sequenced on a GS FLX Titanium platform (Roche Diagnostics) at Macrogen, Inc. (South Korea), on the basis of both shotgun and 3-kb paired-end libraries, resulting in 70-fold genome coverage. Raw sequence data fit the quality standards of the Genomes OnLine Database (GOLD) (11). Sequencing reads were de novo assembled (Newbler 3.0), resulting in a total of 12 scaffolds (>40 kb each) and 51 contigs (<3 kb each). Most of the gaps (78%) were closed using customized informatics scripts (L. Martínez-Rodríguez, J. A. López-Contreras, F. Martínez-Abarca, and N. Toro, unpublished data). The remaining gaps (except two, corresponding to repeated sequences) were manually closed by combining Southern blot hybridization data and a detailed observation of relevant sequencing reads with the Tablet tool (http://bioinf.scri.ac.uk/tablet/). The genome was annotated using the Integrated Microbial Genomes (IMG) Expert Review (ER) service (12). Replicon sizes and the G+C content of the chromosome and plasmids pRmeGR4a, pRmeGR4b, pRmeGR4c (related to pSymA), and pRmeGR4d (related to pSymB) are 3,618,794 bp (62.8%), 175,986 bp (60.0%), 225,725 bp (58.6%), 1,417,856 bp (60.4%), and 1,701,197 bp (62.4%), respectively. The complete genome consists of 6,700 protein-coding sequences: 3,334 on the chromosome, 1,541 on pRmeGR4d, 1,393 on pRmeGR4c, 247 on pRmeGR4b, and 185 on pRmeGR4a. Similarly to other S. meliloti genomes, 3 rrn chromosomal operons and 55 tRNA loci (52 on the chromosome and 3 on plasmids) were identified. In addition, 1,066 noncoding RNA genes (sRNAs) were predicted in this genome based on those identified in the S. meliloti 1021 and 2011 reference strains (12, 13). Genome comparisons using the MUMmer package (14) revealed a high degree of synteny of the chromosome and the largest plasmid (pRmeGR4d) to the corresponding replicons of the other four sequenced S. meliloti strains. This synteny is less pronounced in the symbiotic megaplasmid pRmeGR4c. The two smaller plasmids, pRmeGR4a and pRmeGR4b, did not evidence signs of synteny with any rhizobial genomic region, which, together with their low G+C content, suggests that horizontal transfer has been the major contribution to the mosaic arrangement of these accessory replicons.
Nucleotide sequence accession numbers.
The accession no. for GR4 chromosome, pRmeGR4a, pRmeGR4b, pRmeGR4c, and pRmeGR4d are CP003933, CP003934, CP003935, CP003936, and CP003937, respectively.
ACKNOWLEDGMENTS
This work was supported by research grants BIO2011-24401 from the Spanish Ministerio de Ciencia e Innovación and CSD 2009-0006 of Programme Consolider-Ingenio, both including ERDF (European Regional Development Funds).
L.M.-R. and J.A.L.-C. were supported by predoctoral fellowships (Programs JAE-Predoc and I3P from Consejo Superior de Investigaciones Científicas, respectively). We are particularly grateful to M. G. Claros and R. Bautista from Plataforma Andaluza de Bioinformática (Universidad de Málaga) Spain, to A. J. Fernández-González for bioinformatics support, and to the Estación Experimental del Zaidín—CSIC for DNA sequencing services.
Footnotes
Citation Martínez-Abarca F, Martínez-Rodríguez L, López-Contreras JA, Jiménez-Zurdo JI, Toro N. 2013. Complete genome sequence of the alfalfa symbiont Sinorhizobium/Ensifer meliloti strain GR4. Genome Announc. 1(1):e00174-12. doi:10.1128/genomeA.00174-12.
REFERENCES
- 1. Sahgal M, Johri BN. 2003. Taxonomy of rhizobia: current status. Curr. Sci. 90:486–487 [Google Scholar]
- 2. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J. 2001. The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672 [DOI] [PubMed] [Google Scholar]
- 3. Schneiker-Bekel S, Wibberg D, Bekel T, Blom J, Linke B, Neuweger H, Stiens M, Vorhölter FJ, Weidner S, Goesmann A, Pühler A, Schlüter A. 2011. The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome. J. Biotechnol. 155:20–33 [DOI] [PubMed] [Google Scholar]
- 4. Galardini M, Mengoni A, Brilli M, Pini F, Fioravanti A, Lucas S, Lapidus A, Cheng JF, Goodwin L, Pitluck S, Land M, Hauser L, Woyke T, Mikhailova N, Ivanova N, Daligault H, Bruce D, Detter C, Tapia R, Han C, Teshima H, Mocali S, Bazzicalupo M, Biondi EG. 2011. Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti. BMC Genomics 12:235 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Casadesús J, Olivares J. 1979. Rough and fine linkage mapping of the Rhizobium meliloti chromosome. Mol. Gen. Genet. 174:203–209 [DOI] [PubMed] [Google Scholar]
- 6. Muñoz E, Villadas PJ, Toro N. 2001. Ectopic transposition of a group II intron in natural bacterial populations. Mol. Microbiol. 41:645–652 [DOI] [PubMed] [Google Scholar]
- 7. Soto MJ, Zorzano A, Olivares J, Toro N. 1992. Nucleotide sequence of Rhizobium meliloti GR4 insertion sequence ISRm3 linked to the nodulation competitiveness locus nfe. Plant Mol. Biol. 20:307–309 [DOI] [PubMed] [Google Scholar]
- 8. Soto MJ, Zorzano A, Olivares J, Toro N. 1992. Sequence of ISRm4 from Rhizobium meliloti strain GR4. Gene 120:125–126 [DOI] [PubMed] [Google Scholar]
- 9. Soto MJ, Zorzano A, Mercado-Blanco J, Lepek V, Olivares J, Toro N. 1993. Nucleotide sequence and characterization of Rhizobium meliloti nodulation competitiveness genes nfe. J. Mol. Biol. 229:570–576 [DOI] [PubMed] [Google Scholar]
- 10. Zekri S, Soto MJ, Toro N. 1998. ISRm4-1 and ISRm9, two novel insertion sequences from Sinorhizobium meliloti. Gene 207:93–96 [DOI] [PubMed] [Google Scholar]
- 11. Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyrpides NC. 2010. The genomes on line Database (gold) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res. 38:D346–D354 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC. 2009. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25:2271–2278 [DOI] [PubMed] [Google Scholar]
- 13. del Val C, Rivas E, Torres-Quesada O, Toro N, Jiménez-Zurdo JI. 2007. Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics. Mol. Microbiol. 66:1080–1091 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Schlüter JP, Reinkensmeier J, Daschkey S, Evguenieva-Hackenberg E, Janssen S, Jänicke S, Becker JD, Giegerich R, Becker A. 2010. A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti. BMC Genomics 11:245 [DOI] [PMC free article] [PubMed] [Google Scholar]
