Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 9;69(Pt 2):o208–o209. doi: 10.1107/S1600536812052038

[2,7-Dihy­droxy-8-(4-phen­oxy­benzo­yl)naphthalen-1-yl](4-phen­oxy­phen­yl)methanone

Daichi Hijikata a, Kosuke Sasagawa a, Sayaka Yoshiwaka a, Akiko Okamoto a,*, Noriyuki Yonezawa a
PMCID: PMC3569745  PMID: 23424491

Abstract

In the title compound, C36H24O6, the benzoyl groups at the 1- and 8-positions of the naphthalene system are in an anti orientation. Both carbonyl groups form intra­molecular O—H⋯O hydrogen bonds with hy­droxy groups affording six-membered rings. The benzene rings of the benzoyl groups make dihedral angles of 59.26 (13) and 59.09 (13)° with the naphthalene ring system. Zigzag C—H⋯O chains and ladder C—H⋯O chains between the phenoxybenzoyl groups along the ab diagonals form an undulating checkered sheet. The molecules are further connected into a three-dimensional network by C—H⋯π interactions.

Related literature  

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011, 2013). For the structures of (2,7-dimeth­oxy­naphthalene-1,8-di­yl)bis­(4-fluoro­phen­yl)di­meth­anone and 2,7-dimeth­oxy-1,8-bis­(4-phen­oxy­benzo­yl)naphthalene, see: Watanabe et al. (2010) andr Hijikata et al. (2010), respectively.graphic file with name e-69-0o208-scheme1.jpg

Experimental  

Crystal data  

  • C36H24O6

  • M r = 552.55

  • Monoclinic, Inline graphic

  • a = 16.0313 (3) Å

  • b = 18.4956 (3) Å

  • c = 12.1238 (2) Å

  • β = 131.389 (1)°

  • V = 2696.95 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.75 mm−1

  • T = 193 K

  • 0.60 × 0.55 × 0.10 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.661, T max = 0.929

  • 22236 measured reflections

  • 4868 independent reflections

  • 4527 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.096

  • S = 1.08

  • 4868 reflections

  • 382 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983), 2389 Friedel pairs

  • Flack parameter: 0.05 (19)

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812052038/rn2112sup1.cif

e-69-0o208-sup1.cif (37.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812052038/rn2112Isup2.hkl

e-69-0o208-Isup2.hkl (233.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812052038/rn2112Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C25—C30 and C31—C36 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1 0.84 1.83 2.560 (3) 145
O6—H6A⋯O2 0.84 1.88 2.563 (3) 138
C26—H26⋯O4i 0.95 2.48 3.377 (4) 157
C27—H27⋯O1i 0.95 2.51 3.269 (4) 137
C32—H32⋯O3ii 0.95 2.49 3.382 (4) 156
C33—H33⋯O2ii 0.95 2.51 3.270 (4) 137
C14—H14⋯Cg1iii 0.95 2.80 3.740 (2) 171
C21—H21⋯Cg2iv 0.95 2.80 3.740 (2) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors would like to express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for his technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

supplementary crystallographic information

Comment

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). As one of the applications of peri-aroylnaphthalene synthetic studies, the authors have integrated the resulting molecular unit to the poly(ether ketone) backbone via nucleophilic aromatic substitution polycondensation (Okamoto et al., 2013). The poly(ether ketone)s composed of 1,8-diaroylenenaphthalene units show unique thermal properties and solubility for organic solvents. These notable properties could arise from the structural features of the 1,8-diaroylene naphthalene units. Under these circumstances, the authors have undertaken the X-ray crystal structural study of several 1,8-diaroylated naphthalene analogues exemplified by (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone (Watanabe et al., 2010) and 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010). These molecules have essentially the same non-coplanar features. The two aroyl groups are twisted so they are almost perpendicular to the naphthalene rings.

The molecular structure of the title compound is displayed in Fig. 1. Two benzoyl groups are on the 1,8-positions of the naphthalene ring and are in an anti orientation relative to one another. The benzene rings of the benzoyl groups make dihedral angles with the naphthalene ring of 59.26 (13) and 59.09 (13)°, respectively. The dihedral angles between the benzene rings of the benzoyl groups and those of the phenoxy groups are 69.05 (13) and 69.02 (13)°. Both carbonyl groups form intramolecular O—H···O hydrogen bonds with hydroxy groups affording six-membered rings. (Fig. 1, Table 1).

In the crystal structure, the molecular packing of the title compound is stabilized mainly by C—H···O and C—H···π interactions. The aromatic hydrogen atoms of the phenoxy groups form two types of intermolecular C—H···O interactions with the ethereal oxygen atom of the phenoxy groups(C26—H26···O4i= 2.48 Å, C32—H32···O3ii= 2.49 Å; Fig. 2 and Table 1) and the carbonyl oxygen atom (C27—H27···O1i= 2.51 Å, C33—H33···O2ii= 2.51 Å; Fig. 2 and Table 1). Intermolecular C—H···π interactions between the aromatic hydrogen atom of the benzoyl group and the centroid of the benzene ring of the phenoxy group (C14—H14···Cg1iii= 2.80 Å, C21—H21···Cg2iv= 2.80 Å; Fig. 3 and Table 1) are observed.

Experimental

To a stirring solution of 1,8-bis(4-phenoxybenzoyl)-2,7-dimethoxynaphthalene (1.0 mmol, 580 mg) in dichloromethane (1.0 ml) at 0°C was added 1.0 M boron tribromide solution in dichloromethane (4.4 ml) slowly, and the reaction mixture was allowed to reach the room temperature. After the reaction mixture had been stirred at room temperature for 48 h, the reaction mixture was cooled to 0 oC and very slowly quenched with water and extracted with CHCl3. The organic layer thus obtained was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake. The crude product was purified by column chromatography (silica gel, CHCl3) to give the title compound (isolated yield 88%). Single crystals suitable for X-ray diffraction were obtained by crystallization from Et2O-hexane (v/v = 1:2).

1H NMR δ (300 MHz, CDCl3): 6.82–6.84 (4H, m), 7.08–7.26 (10H, m), 7.40 (4H, t, J=7.9 Hz) 7.86 (2H, d, J=8.9 Hz), 11.29 (2H, s) p.p.m.

13C NMR δ (75 MHz, CDCl3): 115.13, 117.03, 117.28, 120.02, 122.02, 124.46, 130.00, 130.68, 133.79, 136.09, 155.58, 161.74, 195.80 p.p.m.

IR (KBr): 3396(O—H), 1620 (C=O), 1608, 1583, 1487 (Ar, naphthalene) cm-1.

HRMS (m/z): [M + H]+ calcd for C36H25O6, 553.1651 found, 553.1637.

m.p. 464.6–465.9 K.

Refinement

All the H atoms could be located in difference Fourier maps. All the H atoms were subsequently refined as riding atoms, with O5—H5A = 0.84, O6—H6A = 0.84, C—H = 0.95 (aromatic) Å, Uiso(H) = 1.2Ueq(O) and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound, showing 30% probability displacement ellipsoids. The intramolecular O—H···O hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

A partial crystal packing diagram of title compound. The intermolecular C—H···O interactions are shown as dashed lines.

Fig. 3.

Fig. 3.

A partial crystal packing diagram of title compound. The intermolecular C—H···π interactions are shown as dashed lines.

Crystal data

C36H24O6 F(000) = 1152
Mr = 552.55 Dx = 1.361 Mg m3
Monoclinic, Cc Cu Kα radiation, λ = 1.54187 Å
Hall symbol: C -2yc Cell parameters from 14515 reflections
a = 16.0313 (3) Å θ = 4.4–68.1°
b = 18.4956 (3) Å µ = 0.75 mm1
c = 12.1238 (2) Å T = 193 K
β = 131.389 (1)° Block, yellow
V = 2696.95 (9) Å3 0.60 × 0.55 × 0.10 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 4868 independent reflections
Radiation source: rotating anode 4527 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
Detector resolution: 10.000 pixels mm-1 θmax = 68.1°, θmin = 4.4°
ω scans h = −19→19
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −22→22
Tmin = 0.661, Tmax = 0.929 l = −14→14
22236 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0414P)2 + 1.2872P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.20 e Å3
4868 reflections Δρmin = −0.21 e Å3
382 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraints Extinction coefficient: 0.00222 (11)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 2389 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.05 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.46616 (15) 0.24827 (8) 0.4776 (2) 0.0586 (5)
O2 0.36810 (15) 0.00189 (8) 0.4778 (2) 0.0589 (5)
O3 0.78626 (13) −0.00972 (9) 0.69269 (17) 0.0540 (4)
O4 0.26329 (13) 0.25987 (9) 0.69275 (17) 0.0540 (4)
O5 0.3598 (2) 0.31569 (12) 0.2334 (3) 0.0889 (7)
H5A 0.4028 0.3117 0.3252 0.107*
O6 0.2301 (2) −0.06560 (12) 0.2333 (3) 0.0887 (7)
H6A 0.2881 −0.0652 0.3226 0.106*
C1 0.33277 (19) 0.18893 (13) 0.2506 (2) 0.0461 (5)
C2 0.3049 (3) 0.25255 (17) 0.1699 (3) 0.0664 (8)
C3 0.2213 (3) 0.2516 (3) 0.0165 (4) 0.0985 (15)
H3 0.2020 0.2950 −0.0374 0.118*
C4 0.1684 (3) 0.1906 (3) −0.0546 (3) 0.1016 (16)
H4 0.1154 0.1909 −0.1591 0.122*
C5 0.1337 (2) 0.0591 (3) −0.0547 (3) 0.1027 (16)
H5 0.0822 0.0587 −0.1592 0.123*
C6 0.1529 (3) −0.0033 (3) 0.0189 (4) 0.1012 (15)
H6 0.1190 −0.0471 −0.0339 0.121*
C7 0.2216 (2) −0.00274 (17) 0.1702 (3) 0.0661 (8)
C8 0.27453 (17) 0.06111 (13) 0.2507 (2) 0.0460 (5)
C9 0.26698 (17) 0.12502 (15) 0.1775 (2) 0.0487 (5)
C10 0.1889 (2) 0.1250 (2) 0.0211 (3) 0.0757 (9)
C11 0.43775 (19) 0.19208 (11) 0.4067 (2) 0.0426 (5)
C12 0.51884 (16) 0.13161 (11) 0.4748 (2) 0.0369 (4)
C13 0.59891 (17) 0.12824 (12) 0.6275 (2) 0.0422 (5)
H13 0.5936 0.1599 0.6843 0.051*
C14 0.68556 (17) 0.07991 (13) 0.6977 (2) 0.0452 (5)
H14 0.7375 0.0764 0.8019 0.054*
C15 0.69610 (16) 0.03646 (11) 0.6145 (2) 0.0399 (4)
C16 0.61693 (17) 0.03743 (12) 0.4626 (2) 0.0413 (5)
H16 0.6240 0.0065 0.4066 0.050*
C17 0.52707 (17) 0.08406 (12) 0.3929 (2) 0.0405 (5)
H17 0.4707 0.0836 0.2888 0.049*
C18 0.32565 (17) 0.05816 (11) 0.4067 (2) 0.0427 (5)
C19 0.31261 (16) 0.11833 (11) 0.4748 (2) 0.0368 (4)
C20 0.38516 (17) 0.12173 (12) 0.6276 (2) 0.0421 (5)
H20 0.4471 0.0899 0.6844 0.050*
C21 0.36894 (18) 0.17017 (13) 0.6976 (2) 0.0458 (5)
H21 0.4215 0.1738 0.8018 0.055*
C22 0.27547 (17) 0.21371 (11) 0.6151 (2) 0.0399 (4)
C23 0.20247 (17) 0.21294 (12) 0.4623 (2) 0.0412 (5)
H23 0.1397 0.2441 0.4063 0.049*
C24 0.22251 (17) 0.16599 (12) 0.3928 (2) 0.0402 (5)
H24 0.1746 0.1662 0.2886 0.048*
C25 0.83934 (16) −0.02601 (13) 0.6401 (2) 0.0449 (5)
C26 0.87387 (19) −0.09629 (14) 0.6575 (3) 0.0530 (6)
H26 0.8565 −0.1317 0.6964 0.064*
C27 0.9345 (2) −0.11477 (15) 0.6174 (3) 0.0567 (6)
H27 0.9577 −0.1634 0.6274 0.068*
C28 0.9614 (2) −0.06375 (15) 0.5636 (3) 0.0553 (6)
H28 1.0036 −0.0769 0.5372 0.066*
C29 0.92693 (19) 0.00719 (15) 0.5477 (3) 0.0532 (6)
H29 0.9457 0.0428 0.5108 0.064*
C30 0.86529 (18) 0.02621 (13) 0.5855 (2) 0.0480 (5)
H30 0.8410 0.0747 0.5740 0.058*
C31 0.15740 (18) 0.27605 (13) 0.6400 (2) 0.0447 (5)
C32 0.1402 (2) 0.34624 (14) 0.6574 (3) 0.0536 (6)
H32 0.1966 0.3815 0.6966 0.064*
C33 0.0399 (2) 0.36505 (15) 0.6174 (3) 0.0565 (6)
H33 0.0268 0.4137 0.6274 0.068*
C34 −0.0414 (2) 0.31361 (15) 0.5632 (3) 0.0553 (6)
H34 −0.1098 0.3267 0.5370 0.066*
C35 −0.0229 (2) 0.24338 (15) 0.5473 (3) 0.0536 (6)
H35 −0.0788 0.2079 0.5097 0.064*
C36 0.0773 (2) 0.22397 (13) 0.5859 (2) 0.0480 (5)
H36 0.0902 0.1754 0.5751 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0674 (11) 0.0398 (8) 0.0723 (11) 0.0032 (8) 0.0477 (10) −0.0045 (8)
O2 0.0679 (12) 0.0406 (9) 0.0727 (11) 0.0090 (8) 0.0484 (10) 0.0052 (8)
O3 0.0489 (9) 0.0693 (11) 0.0468 (8) 0.0229 (8) 0.0329 (8) 0.0118 (7)
O4 0.0441 (9) 0.0691 (11) 0.0456 (8) 0.0075 (8) 0.0284 (7) −0.0114 (7)
O5 0.1121 (19) 0.0656 (13) 0.1298 (19) 0.0416 (13) 0.0974 (18) 0.0511 (13)
O6 0.0801 (15) 0.0650 (13) 0.1276 (19) −0.0250 (11) 0.0715 (14) −0.0503 (13)
C1 0.0473 (12) 0.0584 (14) 0.0462 (12) 0.0211 (10) 0.0368 (11) 0.0146 (10)
C2 0.0748 (18) 0.0779 (19) 0.0782 (18) 0.0407 (15) 0.0640 (17) 0.0389 (15)
C3 0.081 (2) 0.161 (4) 0.080 (2) 0.077 (3) 0.064 (2) 0.080 (3)
C4 0.0517 (18) 0.217 (5) 0.0412 (15) 0.054 (3) 0.0328 (14) 0.038 (2)
C5 0.0345 (14) 0.219 (5) 0.0422 (15) 0.004 (2) 0.0201 (13) −0.042 (2)
C6 0.0496 (17) 0.167 (4) 0.082 (2) −0.031 (2) 0.0411 (18) −0.083 (3)
C7 0.0424 (13) 0.080 (2) 0.0774 (18) −0.0113 (13) 0.0403 (14) −0.0387 (15)
C8 0.0302 (10) 0.0581 (14) 0.0470 (12) 0.0028 (9) 0.0244 (9) −0.0147 (10)
C9 0.0329 (11) 0.0798 (15) 0.0347 (10) 0.0158 (11) 0.0230 (9) −0.0004 (11)
C10 0.0336 (12) 0.159 (3) 0.0319 (11) 0.0234 (16) 0.0206 (10) −0.0003 (16)
C11 0.0501 (12) 0.0401 (11) 0.0516 (12) 0.0021 (9) 0.0396 (11) 0.0009 (9)
C12 0.0329 (10) 0.0386 (10) 0.0411 (10) −0.0010 (8) 0.0252 (9) −0.0009 (8)
C13 0.0372 (11) 0.0491 (11) 0.0418 (10) −0.0025 (9) 0.0269 (10) −0.0094 (9)
C14 0.0351 (11) 0.0609 (13) 0.0352 (10) 0.0035 (9) 0.0213 (9) −0.0013 (9)
C15 0.0341 (10) 0.0437 (11) 0.0426 (10) 0.0057 (9) 0.0257 (9) 0.0040 (9)
C16 0.0405 (11) 0.0445 (11) 0.0421 (10) 0.0030 (9) 0.0287 (9) −0.0050 (8)
C17 0.0346 (10) 0.0504 (12) 0.0362 (10) 0.0050 (9) 0.0232 (9) 0.0013 (8)
C18 0.0355 (10) 0.0386 (11) 0.0523 (12) 0.0013 (9) 0.0283 (10) −0.0003 (9)
C19 0.0377 (10) 0.0384 (10) 0.0410 (10) 0.0008 (8) 0.0289 (9) 0.0017 (8)
C20 0.0385 (11) 0.0489 (11) 0.0418 (10) 0.0101 (9) 0.0278 (9) 0.0092 (9)
C21 0.0400 (11) 0.0627 (13) 0.0346 (10) 0.0052 (10) 0.0247 (9) 0.0016 (9)
C22 0.0392 (11) 0.0460 (11) 0.0404 (10) 0.0016 (9) 0.0289 (9) −0.0025 (9)
C23 0.0379 (10) 0.0450 (11) 0.0405 (10) 0.0104 (9) 0.0259 (9) 0.0054 (8)
C24 0.0350 (11) 0.0509 (12) 0.0360 (10) 0.0034 (9) 0.0241 (9) −0.0008 (8)
C25 0.0310 (10) 0.0608 (14) 0.0350 (10) 0.0065 (9) 0.0184 (9) −0.0036 (9)
C26 0.0390 (12) 0.0598 (14) 0.0540 (13) 0.0056 (10) 0.0281 (11) −0.0001 (11)
C27 0.0425 (12) 0.0593 (15) 0.0600 (14) 0.0066 (11) 0.0303 (11) −0.0098 (12)
C28 0.0370 (11) 0.0753 (16) 0.0529 (12) −0.0033 (11) 0.0294 (11) −0.0173 (12)
C29 0.0395 (12) 0.0713 (16) 0.0431 (12) −0.0088 (11) 0.0248 (10) −0.0100 (11)
C30 0.0368 (11) 0.0516 (13) 0.0411 (11) 0.0009 (9) 0.0196 (10) −0.0073 (9)
C31 0.0428 (11) 0.0600 (14) 0.0358 (10) 0.0109 (10) 0.0280 (10) 0.0043 (9)
C32 0.0589 (15) 0.0611 (14) 0.0552 (13) 0.0054 (11) 0.0439 (13) 0.0000 (11)
C33 0.0672 (16) 0.0597 (15) 0.0581 (14) 0.0193 (13) 0.0481 (13) 0.0102 (11)
C34 0.0507 (13) 0.0771 (17) 0.0521 (12) 0.0203 (13) 0.0400 (11) 0.0176 (12)
C35 0.0514 (14) 0.0697 (16) 0.0444 (12) 0.0038 (12) 0.0336 (11) 0.0090 (11)
C36 0.0547 (13) 0.0530 (13) 0.0417 (11) 0.0106 (10) 0.0342 (11) 0.0075 (9)

Geometric parameters (Å, º)

O1—C11 1.228 (3) C16—H16 0.9500
O2—C18 1.230 (3) C17—H17 0.9500
O3—C15 1.380 (2) C18—C19 1.481 (3)
O3—C25 1.392 (3) C19—C20 1.393 (3)
O4—C22 1.377 (2) C19—C24 1.397 (3)
O4—C31 1.395 (3) C20—C21 1.372 (3)
O5—C2 1.355 (4) C20—H20 0.9500
O5—H5A 0.8400 C21—C22 1.383 (3)
O6—C7 1.348 (4) C21—H21 0.9500
O6—H6A 0.8400 C22—C23 1.391 (3)
C1—C2 1.401 (3) C23—C24 1.387 (3)
C1—C9 1.435 (4) C23—H23 0.9500
C1—C11 1.485 (3) C24—H24 0.9500
C2—C3 1.399 (5) C25—C26 1.373 (3)
C3—C4 1.329 (6) C25—C30 1.382 (3)
C3—H3 0.9500 C26—C27 1.387 (4)
C4—C10 1.423 (6) C26—H26 0.9500
C4—H4 0.9500 C27—C28 1.370 (4)
C5—C6 1.364 (6) C27—H27 0.9500
C5—C10 1.428 (6) C28—C29 1.387 (4)
C5—H5 0.9500 C28—H28 0.9500
C6—C7 1.381 (5) C29—C30 1.381 (3)
C6—H6 0.9500 C29—H29 0.9500
C7—C8 1.404 (3) C30—H30 0.9500
C8—C9 1.435 (4) C31—C32 1.372 (3)
C8—C18 1.484 (3) C31—C36 1.376 (3)
C9—C10 1.422 (3) C32—C33 1.383 (4)
C11—C12 1.484 (3) C32—H32 0.9500
C12—C13 1.392 (3) C33—C34 1.379 (4)
C12—C17 1.396 (3) C33—H33 0.9500
C13—C14 1.375 (3) C34—C35 1.374 (4)
C13—H13 0.9500 C34—H34 0.9500
C14—C15 1.385 (3) C35—C36 1.390 (3)
C14—H14 0.9500 C35—H35 0.9500
C15—C16 1.383 (3) C36—H36 0.9500
C16—C17 1.387 (3)
C15—O3—C25 119.93 (16) O2—C18—C8 120.5 (2)
C22—O4—C31 119.97 (16) C19—C18—C8 121.35 (18)
C2—O5—H5A 109.5 C20—C19—C24 118.61 (18)
C7—O6—H6A 109.5 C20—C19—C18 118.29 (18)
C2—C1—C9 119.7 (2) C24—C19—C18 122.58 (18)
C2—C1—C11 115.2 (2) C21—C20—C19 121.27 (19)
C9—C1—C11 124.8 (2) C21—C20—H20 119.4
O5—C2—C3 117.3 (3) C19—C20—H20 119.4
O5—C2—C1 122.7 (3) C20—C21—C22 119.41 (19)
C3—C2—C1 120.0 (3) C20—C21—H21 120.3
C4—C3—C2 120.9 (3) C22—C21—H21 120.3
C4—C3—H3 119.6 O4—C22—C21 116.27 (18)
C2—C3—H3 119.6 O4—C22—C23 122.82 (18)
C3—C4—C10 121.9 (3) C21—C22—C23 120.80 (18)
C3—C4—H4 119.1 C24—C23—C22 119.10 (19)
C10—C4—H4 119.1 C24—C23—H23 120.4
C6—C5—C10 121.7 (3) C22—C23—H23 120.4
C6—C5—H5 119.2 C23—C24—C19 120.58 (18)
C10—C5—H5 119.2 C23—C24—H24 119.7
C5—C6—C7 120.0 (3) C19—C24—H24 119.7
C5—C6—H6 120.0 C26—C25—C30 121.1 (2)
C7—C6—H6 120.0 C26—C25—O3 116.2 (2)
O6—C7—C6 116.1 (3) C30—C25—O3 122.5 (2)
O6—C7—C8 122.9 (3) C25—C26—C27 119.0 (2)
C6—C7—C8 121.0 (4) C25—C26—H26 120.5
C7—C8—C9 119.8 (2) C27—C26—H26 120.5
C7—C8—C18 115.2 (2) C28—C27—C26 120.8 (2)
C9—C8—C18 124.7 (2) C28—C27—H27 119.6
C10—C9—C8 117.7 (3) C26—C27—H27 119.6
C10—C9—C1 117.6 (3) C27—C28—C29 119.7 (2)
C8—C9—C1 124.71 (18) C27—C28—H28 120.2
C9—C10—C4 119.0 (3) C29—C28—H28 120.2
C9—C10—C5 118.9 (3) C30—C29—C28 120.2 (2)
C4—C10—C5 122.1 (3) C30—C29—H29 119.9
O1—C11—C12 117.7 (2) C28—C29—H29 119.9
O1—C11—C1 120.6 (2) C29—C30—C25 119.3 (2)
C12—C11—C1 121.13 (18) C29—C30—H30 120.4
C13—C12—C17 118.70 (18) C25—C30—H30 120.4
C13—C12—C11 118.15 (18) C32—C31—C36 121.1 (2)
C17—C12—C11 122.61 (18) C32—C31—O4 116.1 (2)
C14—C13—C12 121.21 (19) C36—C31—O4 122.6 (2)
C14—C13—H13 119.4 C31—C32—C33 119.3 (2)
C12—C13—H13 119.4 C31—C32—H32 120.3
C13—C14—C15 119.11 (19) C33—C32—H32 120.3
C13—C14—H14 120.4 C34—C33—C32 120.4 (2)
C15—C14—H14 120.4 C34—C33—H33 119.8
O3—C15—C16 123.03 (18) C32—C33—H33 119.8
O3—C15—C14 115.80 (18) C35—C34—C33 119.7 (2)
C16—C15—C14 121.08 (18) C35—C34—H34 120.1
C15—C16—C17 119.23 (19) C33—C34—H34 120.1
C15—C16—H16 120.4 C34—C35—C36 120.3 (2)
C17—C16—H16 120.4 C34—C35—H35 119.8
C16—C17—C12 120.47 (18) C36—C35—H35 119.8
C16—C17—H17 119.8 C31—C36—C35 119.1 (2)
C12—C17—H17 119.8 C31—C36—H36 120.5
O2—C18—C19 117.5 (2) C35—C36—H36 120.5
C9—C1—C2—O5 176.4 (2) O3—C15—C16—C17 178.0 (2)
C11—C1—C2—O5 −9.4 (3) C14—C15—C16—C17 1.6 (3)
C9—C1—C2—C3 −7.1 (3) C15—C16—C17—C12 2.6 (3)
C11—C1—C2—C3 167.1 (2) C13—C12—C17—C16 −3.8 (3)
O5—C2—C3—C4 175.7 (3) C11—C12—C17—C16 167.6 (2)
C1—C2—C3—C4 −1.0 (4) C7—C8—C18—O2 34.8 (3)
C2—C3—C4—C10 4.1 (5) C9—C8—C18—O2 −151.6 (2)
C10—C5—C6—C7 4.3 (5) C7—C8—C18—C19 −135.9 (2)
C5—C6—C7—O6 175.6 (3) C9—C8—C18—C19 37.8 (3)
C5—C6—C7—C8 −1.4 (4) O2—C18—C19—C20 26.1 (3)
O6—C7—C8—C9 176.5 (2) C8—C18—C19—C20 −163.0 (2)
C6—C7—C8—C9 −6.7 (3) O2—C18—C19—C24 −145.5 (2)
O6—C7—C8—C18 −9.5 (3) C8—C18—C19—C24 25.5 (3)
C6—C7—C8—C18 167.4 (2) C24—C19—C20—C21 0.5 (3)
C7—C8—C9—C10 11.6 (3) C18—C19—C20—C21 −171.4 (2)
C18—C8—C9—C10 −161.8 (2) C19—C20—C21—C22 3.6 (3)
C7—C8—C9—C1 −168.3 (2) C31—O4—C22—C21 −146.0 (2)
C18—C8—C9—C1 18.3 (3) C31—O4—C22—C23 37.7 (3)
C2—C1—C9—C10 11.7 (3) C20—C21—C22—O4 178.6 (2)
C11—C1—C9—C10 −161.8 (2) C20—C21—C22—C23 −5.0 (3)
C2—C1—C9—C8 −168.4 (2) O4—C22—C23—C24 178.3 (2)
C11—C1—C9—C8 18.0 (3) C21—C22—C23—C24 2.1 (3)
C8—C9—C10—C4 171.4 (2) C22—C23—C24—C19 2.1 (3)
C1—C9—C10—C4 −8.7 (3) C20—C19—C24—C23 −3.5 (3)
C8—C9—C10—C5 −8.7 (3) C18—C19—C24—C23 168.1 (2)
C1—C9—C10—C5 171.2 (2) C15—O3—C25—C26 −140.9 (2)
C3—C4—C10—C9 0.9 (4) C15—O3—C25—C30 44.7 (3)
C3—C4—C10—C5 −178.9 (3) C30—C25—C26—C27 −0.8 (3)
C6—C5—C10—C9 0.9 (4) O3—C25—C26—C27 −175.3 (2)
C6—C5—C10—C4 −179.2 (3) C25—C26—C27—C28 1.1 (4)
C2—C1—C11—O1 34.9 (3) C26—C27—C28—C29 −0.5 (4)
C9—C1—C11—O1 −151.3 (2) C27—C28—C29—C30 −0.3 (3)
C2—C1—C11—C12 −136.1 (2) C28—C29—C30—C25 0.5 (3)
C9—C1—C11—C12 37.7 (3) C26—C25—C30—C29 0.0 (3)
O1—C11—C12—C13 26.0 (3) O3—C25—C30—C29 174.1 (2)
C1—C11—C12—C13 −162.8 (2) C22—O4—C31—C32 −141.1 (2)
O1—C11—C12—C17 −145.5 (2) C22—O4—C31—C36 44.7 (3)
C1—C11—C12—C17 25.8 (3) C36—C31—C32—C33 −1.2 (3)
C17—C12—C13—C14 0.8 (3) O4—C31—C32—C33 −175.38 (19)
C11—C12—C13—C14 −171.0 (2) C31—C32—C33—C34 1.2 (3)
C12—C13—C14—C15 3.3 (3) C32—C33—C34—C35 −0.7 (4)
C25—O3—C15—C16 37.3 (3) C33—C34—C35—C36 0.2 (3)
C25—O3—C15—C14 −146.1 (2) C32—C31—C36—C35 0.6 (3)
C13—C14—C15—O3 178.8 (2) O4—C31—C36—C35 174.45 (19)
C13—C14—C15—C16 −4.5 (3) C34—C35—C36—C31 −0.1 (3)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C25—C30 and C31—C36 rings, respectively.

D—H···A D—H H···A D···A D—H···A
O5—H5A···O1 0.84 1.83 2.560 (3) 145
O6—H6A···O2 0.84 1.88 2.563 (3) 138
C26—H26···O4i 0.95 2.48 3.377 (4) 157
C27—H27···O1i 0.95 2.51 3.269 (4) 137
C32—H32···O3ii 0.95 2.49 3.382 (4) 156
C33—H33···O2ii 0.95 2.51 3.270 (4) 137
C14—H14···Cg1iii 0.95 2.80 3.740 (2) 171
C21—H21···Cg2iv 0.95 2.80 3.740 (2) 171

Symmetry codes: (i) x+1/2, y−1/2, z; (ii) x−1/2, y+1/2, z; (iii) x, −y, z+1/2; (iv) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2112).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  5. Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903. [DOI] [PMC free article] [PubMed]
  6. Okamoto, A., Hijikata, D., Sakai, N. & Yonezawa, N. (2013). Polym. J. In the press. doi:10.1038/pj.2012.135.
  7. Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.
  8. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.
  9. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812052038/rn2112sup1.cif

e-69-0o208-sup1.cif (37.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812052038/rn2112Isup2.hkl

e-69-0o208-Isup2.hkl (233.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812052038/rn2112Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES