Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 9;69(Pt 2):o210. doi: 10.1107/S1600536812052026

1-Benzoyl­naphthalene-2,7-diyl dibenzoate

Rei Sakamoto a, Kosuke Sasagawa a, Daichi Hijikata a, Akiko Okamoto a,*, Noriyuki Yonezawa a
PMCID: PMC3569746  PMID: 23424492

Abstract

In the title compound, C31H20O5, the phenyl rings of the benzo­yloxy and benzoyl groups are twisted away from the naphthalene ring system by 64.27 (6), 73.62 (5) and 80.41 (6)°. In the crystal, C—H⋯O hydrogen bonds and C—H⋯π inter­actions link the mol­ecules, forming tubular chains parallel to the b axis. The chains are further connected into a three-dimensional network by C—H⋯π inter­actions and π–π stacking contacts [centroid–centroid distances = 3.622 (10)–3.866 (12) Å].

Related literature  

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For structures of closely related compounds, see: Kato et al. (2010); Muto et al. (2011); Nakaema et al. (2008); Sakamoto et al. (2012); Watanabe et al. (2010).graphic file with name e-69-0o210-scheme1.jpg

Experimental  

Crystal data  

  • C31H20O5

  • M r = 472.47

  • Monoclinic, Inline graphic

  • a = 16.1318 (3) Å

  • b = 7.18561 (13) Å

  • c = 20.7333 (4) Å

  • β = 99.180 (1)°

  • V = 2372.56 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 193 K

  • 0.40 × 0.40 × 0.30 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.759, T max = 0.811

  • 40057 measured reflections

  • 4282 independent reflections

  • 3753 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.103

  • S = 1.07

  • 4282 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812052026/rz5035sup1.cif

e-69-0o210-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812052026/rz5035Isup2.hkl

e-69-0o210-Isup2.hkl (205.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812052026/rz5035Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C26–C31 and C5–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.30 3.2183 (16) 164
C14—H14⋯O5ii 0.95 2.60 3.520 (2) 164
C29—H29⋯Cg1iii 0.95 2.72 3.6396 (18) 162
C15—H15⋯Cg2ii 0.95 2.78 3.6397 (19) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors would like to express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by the Iron and Steel Institute of Japan (ISIJ) Research Promotion Grant, Tokyo, Japan.

supplementary crystallographic information

Comment

In the course of our study on electrophilic aromatic aroylation of the naphthalene core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylnaphthalenes, e.g., 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008). The two aroyl groups at 1,8-positions of the naphthalene ring in these compounds are perpendicularly attached to the naphthalene ring and oriented in opposite directions. Furthermore, we have also clarified the crystal structures of 1-monoaroylated naphthalene compounds such as (2,7-dimethoxynaphthalene-1-yl)-(phenyl)methanone (Kato et al., 2010) and 2,7-dimethoxy-1-(4-nitrobenzoyl)naphthalene (Watanabe et al., 2010). These compounds also exhibit essentially the same non-coplanar structure as the 1,8-diaroylated naphthalenes. Besides, the crystal structures of the aroylnaphthalene derivatives bearing benzoic ester moiety at the 2- or 2,7-positions on the naphthalene ring, 7-methoxy-1-(4-nitrobenzoyl)naphthalene-2-yl 4-nitrobenzoate (Muto et al., 2011) and 1,8-dibenzoylnaphthalene-2,7-diyl dibenzoate (Sakamoto et al., 2012) have been revealed.

The molecular structure of the title compound is displayed in Fig 1. The benzene ring of the benzoyl group is almost orthogonal to the naphthalene ring system forming a dihedral angle of 80.41 (6)° [C10—C1—C11—O1 torsion angle = 83.35 (15)°]. The two carbonyl moieties of the benzoyloxy groups at the 2,7-positions of the naphthalene ring system are in opposite directions relative to one another, as observed in the homologous compound 1,8-dibenzoylnaphthalene-2,7-diyl dibenzoate (Sakamoto et al., 2012). The phenyl ring of the benzoyloxy group at the 7-position is inclined to form a narrower dihedral angle with the naphthalene ring system [64.27 (6)° and O5—C25—C26—C27 torsion angle = -21.8 (2)°] than the phenyl ring of the benzoyloxy group at the 2-position adjacent to the benzoyl group [73.62 (5)° and O3—C18—C19—C24 torsion angle = -2.1 (2)°]. In the crystal, C–H···O hydrogen bonds between an hydrogen atom of the phenyl ring of the benzoyl group and a carbonyl oxygen of the benzoyloxy group and between an hydrogen atom of the naphthalene ring system and a carbonyl oxygen of the benzoyl group, and weak C–H···π interactions (Table 1) link the molecules into tubular chains running parallel to the b axis (Fig. 2 and 3). Furthermore, the chains are connected into a three-dimensional network by weak C–H···π interactions [C15–H15···Cg2 = 2.78 Å; Cg2 is the centroids of the C5–C10 ring] and π–π contacts [Cg2iii···Cg3, 3.622 (10) Å; Cg4···Cg4iv = 3.821 (12) Å; Cg4···Cg4v = 3.866 (12) Å; Cg3 and Cg4 are the centroids of the C1/C4-C9-C10 and C19/C24 rings, respectively; symmetry codes: (iii) 1-x, 1-y, 1-z; (iv) -x, 1-y, 1-z; (v) -x, 2-y, 1-z).

Experimental

The title compound was prepared via condensation reaction of 1-benzoyl-2,7-dihydroxynaphthalene (0.2 mmol, 52.86 mg) obtained by ethyl ether cleavage reaction of 1-benzoyl-2,7-diethoxynaphthalene, benzoyl chloride (0.4 mmol, 0.046 ml), and triethylamine (0.4 mmol, 0.056 ml) in dichloromethane (2.5 ml). After the reaction mixture was stirred at rt for 2 h, it was poured into water (30 ml) and the mixture was extracted with CHCl3 (10 ml×3). The combined extracts were washed with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by recrystallization from ethyl acetate–hexane (3:1 v/v) and colorless single crystals suitable for X-ray diffraction were obtained (isolated yield 36%).

Spectroscopic data: 1H NMR δ (400 MHz, CDCl3): 7.24–7.38 (4H, m), 7.45–7.54 (6H, m), 7.59 (1H, d, J = 2.4 Hz), 7.63 (1H, t, J = 14.8 Hz), 7.74 (2H, d, J = 7.6 Hz), 7.85 (2H, d, J = 7.2 Hz), 8.02 (1H, d, J = 9.2 Hz), 8.08 (1H, d, J = 9.2 Hz), 8.18 (2H, d, J = 7.2 Hz) p.p.m.. 13C NMR δ (75 MHz, CDCl3): 116.33, 121.37, 121.93, 127.64, 128.26, 128.38, 128.51, 128.61, 129.10, 129.52, 129.59, 129.76, 129.87, 130.13, 130.86, 132.06, 133.59, 133.66, 133.76, 137.49, 146.53, 150.09, 164.18, 164.95, 195.32 p.p.m.. IR (KBr): 1739 (OC=O), 1658 (C=O), 1596,1582, 1510 (Ar) cm-1. m.p. = 422.0–422.8 K. HRMS (m/z): [M+H]+ calcd. for C31H20O5, 473.1390, found, 473.1384.

Refinement

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C–H = 0.95 Å, and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Partial crystal packing of the title compound showing C—H···O and C—H···π interactions as dashed lines.

Fig. 3.

Fig. 3.

C–H···O interaction (dashed line) between naphthalene ring and ketonic carbonyl group.

Crystal data

C31H20O5 F(000) = 984
Mr = 472.47 Dx = 1.323 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2yn Cell parameters from 33959 reflections
a = 16.1318 (3) Å θ = 3.2–68.2°
b = 7.18561 (13) Å µ = 0.73 mm1
c = 20.7333 (4) Å T = 193 K
β = 99.180 (1)° Block, colorless
V = 2372.56 (7) Å3 0.40 × 0.40 × 0.30 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 4282 independent reflections
Radiation source: fine-focus sealed tube 3753 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 10.000 pixels mm-1 θmax = 68.2°, θmin = 3.2°
ω scans h = −19→19
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −8→8
Tmin = 0.759, Tmax = 0.811 l = −24→24
40057 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.4366P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
4282 reflections Δρmax = 0.18 e Å3
326 parameters Δρmin = −0.16 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0025 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.26313 (6) 0.21093 (12) 0.46194 (4) 0.0438 (2)
O2 0.20361 (5) 0.66287 (13) 0.43467 (4) 0.0425 (2)
O3 0.21367 (7) 0.6819 (2) 0.54365 (5) 0.0750 (4)
O4 0.56034 (6) 0.12325 (13) 0.37018 (4) 0.0434 (2)
O5 0.52644 (9) 0.19992 (17) 0.26435 (5) 0.0712 (4)
C1 0.32080 (7) 0.47803 (17) 0.42157 (6) 0.0336 (3)
C2 0.29093 (8) 0.64552 (18) 0.43808 (6) 0.0378 (3)
C3 0.34234 (9) 0.80265 (18) 0.45251 (6) 0.0424 (3)
H3 0.3195 0.9172 0.4644 0.051*
C4 0.42574 (9) 0.78701 (17) 0.44913 (6) 0.0405 (3)
H4 0.4613 0.8917 0.4596 0.049*
C5 0.54650 (8) 0.60238 (19) 0.42507 (6) 0.0409 (3)
H5 0.5828 0.7056 0.4362 0.049*
C6 0.57842 (8) 0.4414 (2) 0.40428 (6) 0.0426 (3)
H6 0.6362 0.4326 0.4005 0.051*
C7 0.52458 (8) 0.28923 (18) 0.38861 (6) 0.0376 (3)
C8 0.44177 (8) 0.29459 (17) 0.39456 (6) 0.0350 (3)
H8 0.4074 0.1878 0.3845 0.042*
C9 0.46055 (8) 0.61883 (17) 0.43044 (6) 0.0354 (3)
C10 0.40728 (7) 0.46095 (16) 0.41582 (5) 0.0327 (3)
C11 0.26389 (7) 0.31006 (17) 0.41439 (6) 0.0341 (3)
C12 0.21077 (8) 0.27099 (18) 0.35081 (6) 0.0386 (3)
C13 0.16406 (9) 0.1071 (2) 0.34343 (7) 0.0495 (3)
H13 0.1692 0.0191 0.3780 0.059*
C14 0.11042 (10) 0.0725 (3) 0.28590 (8) 0.0637 (5)
H14 0.0785 −0.0391 0.2809 0.076*
C15 0.10333 (11) 0.1994 (3) 0.23606 (8) 0.0713 (5)
H15 0.0652 0.1768 0.1970 0.086*
C16 0.15089 (12) 0.3593 (3) 0.24206 (8) 0.0729 (5)
H16 0.1466 0.4446 0.2067 0.088*
C17 0.20496 (10) 0.3964 (2) 0.29958 (7) 0.0544 (4)
H17 0.2377 0.5068 0.3038 0.065*
C18 0.17106 (9) 0.68610 (19) 0.49101 (7) 0.0450 (3)
C19 0.07915 (8) 0.71619 (18) 0.47694 (7) 0.0413 (3)
C20 0.03506 (8) 0.72662 (19) 0.41374 (7) 0.0433 (3)
H20 0.0637 0.7108 0.3775 0.052*
C21 −0.05051 (9) 0.7600 (2) 0.40370 (8) 0.0506 (4)
H21 −0.0807 0.7679 0.3605 0.061*
C22 −0.09207 (9) 0.7819 (2) 0.45659 (8) 0.0556 (4)
H22 −0.1507 0.8059 0.4497 0.067*
C23 −0.04879 (10) 0.7690 (2) 0.51924 (8) 0.0560 (4)
H23 −0.0778 0.7826 0.5554 0.067*
C24 0.03664 (10) 0.7363 (2) 0.52965 (7) 0.0505 (4)
H24 0.0664 0.7276 0.5730 0.061*
C25 0.56198 (8) 0.0984 (2) 0.30540 (6) 0.0439 (3)
C26 0.61134 (8) −0.06865 (19) 0.29340 (6) 0.0415 (3)
C27 0.59531 (11) −0.1511 (2) 0.23219 (8) 0.0579 (4)
H27 0.5543 −0.0993 0.1991 0.069*
C28 0.63909 (12) −0.3084 (2) 0.21950 (9) 0.0670 (5)
H28 0.6277 −0.3655 0.1777 0.080*
C29 0.69917 (10) −0.3831 (2) 0.26699 (8) 0.0577 (4)
H29 0.7287 −0.4921 0.2581 0.069*
C30 0.71647 (9) −0.2999 (2) 0.32736 (8) 0.0500 (4)
H30 0.7587 −0.3505 0.3598 0.060*
C31 0.67265 (8) −0.1426 (2) 0.34107 (7) 0.0440 (3)
H31 0.6845 −0.0857 0.3829 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0459 (5) 0.0411 (5) 0.0436 (5) 0.0008 (4) 0.0050 (4) 0.0052 (4)
O2 0.0361 (5) 0.0463 (5) 0.0443 (5) 0.0103 (4) 0.0037 (4) −0.0065 (4)
O3 0.0498 (6) 0.1293 (12) 0.0434 (6) 0.0096 (7) 0.0000 (5) 0.0035 (6)
O4 0.0428 (5) 0.0494 (5) 0.0397 (5) 0.0133 (4) 0.0120 (4) 0.0041 (4)
O5 0.1021 (9) 0.0679 (7) 0.0420 (6) 0.0397 (7) 0.0066 (6) 0.0050 (5)
C1 0.0337 (6) 0.0344 (6) 0.0314 (6) 0.0018 (5) 0.0014 (5) −0.0007 (5)
C2 0.0354 (6) 0.0390 (7) 0.0376 (6) 0.0052 (5) 0.0020 (5) −0.0014 (5)
C3 0.0509 (8) 0.0329 (6) 0.0413 (7) 0.0048 (5) 0.0015 (6) −0.0033 (5)
C4 0.0486 (8) 0.0346 (7) 0.0359 (6) −0.0053 (5) −0.0009 (5) −0.0003 (5)
C5 0.0384 (7) 0.0480 (7) 0.0351 (6) −0.0088 (6) 0.0022 (5) 0.0047 (5)
C6 0.0334 (6) 0.0551 (8) 0.0398 (7) −0.0001 (6) 0.0074 (5) 0.0081 (6)
C7 0.0379 (7) 0.0433 (7) 0.0320 (6) 0.0068 (5) 0.0063 (5) 0.0042 (5)
C8 0.0348 (6) 0.0366 (6) 0.0330 (6) 0.0007 (5) 0.0037 (5) 0.0006 (5)
C9 0.0387 (7) 0.0372 (6) 0.0291 (6) −0.0037 (5) 0.0013 (5) 0.0027 (5)
C10 0.0338 (6) 0.0356 (6) 0.0276 (6) 0.0004 (5) 0.0016 (5) 0.0016 (5)
C11 0.0299 (6) 0.0349 (6) 0.0379 (6) 0.0056 (5) 0.0067 (5) −0.0023 (5)
C12 0.0328 (6) 0.0457 (7) 0.0380 (7) −0.0004 (5) 0.0074 (5) −0.0069 (5)
C13 0.0448 (8) 0.0523 (8) 0.0518 (8) −0.0068 (6) 0.0090 (6) −0.0134 (7)
C14 0.0525 (9) 0.0782 (11) 0.0598 (10) −0.0155 (8) 0.0068 (7) −0.0281 (9)
C15 0.0553 (10) 0.1101 (15) 0.0453 (9) −0.0065 (10) −0.0017 (7) −0.0271 (10)
C16 0.0739 (12) 0.1018 (15) 0.0393 (8) −0.0034 (11) −0.0025 (8) 0.0056 (9)
C17 0.0519 (8) 0.0668 (10) 0.0429 (8) −0.0090 (7) 0.0031 (6) 0.0021 (7)
C18 0.0459 (8) 0.0463 (7) 0.0427 (7) 0.0049 (6) 0.0062 (6) −0.0003 (6)
C19 0.0418 (7) 0.0378 (7) 0.0448 (7) 0.0010 (5) 0.0080 (6) −0.0022 (5)
C20 0.0412 (7) 0.0434 (7) 0.0459 (7) 0.0023 (6) 0.0086 (6) −0.0019 (6)
C21 0.0415 (7) 0.0532 (8) 0.0559 (9) 0.0024 (6) 0.0045 (6) −0.0015 (7)
C22 0.0404 (8) 0.0544 (9) 0.0736 (10) 0.0009 (6) 0.0138 (7) −0.0081 (8)
C23 0.0528 (9) 0.0593 (9) 0.0610 (9) −0.0033 (7) 0.0246 (7) −0.0117 (7)
C24 0.0519 (8) 0.0538 (8) 0.0470 (8) −0.0025 (7) 0.0118 (7) −0.0054 (6)
C25 0.0435 (7) 0.0481 (7) 0.0406 (7) 0.0051 (6) 0.0085 (6) 0.0029 (6)
C26 0.0393 (7) 0.0436 (7) 0.0440 (7) 0.0022 (6) 0.0141 (6) 0.0034 (6)
C27 0.0674 (10) 0.0573 (9) 0.0478 (8) 0.0123 (8) 0.0061 (7) −0.0009 (7)
C28 0.0854 (13) 0.0589 (10) 0.0574 (10) 0.0143 (9) 0.0130 (9) −0.0116 (8)
C29 0.0600 (9) 0.0462 (8) 0.0724 (11) 0.0096 (7) 0.0273 (8) −0.0001 (7)
C30 0.0385 (7) 0.0516 (8) 0.0625 (9) 0.0070 (6) 0.0156 (7) 0.0083 (7)
C31 0.0370 (7) 0.0489 (8) 0.0480 (8) 0.0009 (6) 0.0130 (6) 0.0029 (6)

Geometric parameters (Å, º)

O1—C11 1.2180 (15) C14—H14 0.9500
O2—C18 1.3653 (17) C15—C16 1.377 (3)
O2—C2 1.4047 (15) C15—H15 0.9500
O3—C18 1.1938 (17) C16—C17 1.386 (2)
O4—C25 1.3594 (16) C16—H16 0.9500
O4—C7 1.4041 (15) C17—H17 0.9500
O5—C25 1.1957 (16) C18—C19 1.4805 (19)
C1—C2 1.3602 (17) C19—C24 1.387 (2)
C1—C10 1.4243 (17) C19—C20 1.3897 (19)
C1—C11 1.5093 (17) C20—C21 1.3837 (19)
C2—C3 1.4046 (18) C20—H20 0.9500
C3—C4 1.363 (2) C21—C22 1.382 (2)
C3—H3 0.9500 C21—H21 0.9500
C4—C9 1.4126 (18) C22—C23 1.376 (2)
C4—H4 0.9500 C22—H22 0.9500
C5—C6 1.363 (2) C23—C24 1.381 (2)
C5—C9 1.4136 (18) C23—H23 0.9500
C5—H5 0.9500 C24—H24 0.9500
C6—C7 1.4021 (19) C25—C26 1.4832 (19)
C6—H6 0.9500 C26—C27 1.387 (2)
C7—C8 1.3616 (18) C26—C31 1.3876 (18)
C8—C10 1.4182 (17) C27—C28 1.381 (2)
C8—H8 0.9500 C27—H27 0.9500
C9—C10 1.4262 (17) C28—C29 1.375 (2)
C11—C12 1.4800 (17) C28—H28 0.9500
C12—C17 1.384 (2) C29—C30 1.375 (2)
C12—C13 1.3934 (19) C29—H29 0.9500
C13—C14 1.380 (2) C30—C31 1.386 (2)
C13—H13 0.9500 C30—H30 0.9500
C14—C15 1.369 (3) C31—H31 0.9500
C18—O2—C2 119.17 (10) C15—C16—H16 119.9
C25—O4—C7 117.01 (10) C17—C16—H16 119.9
C2—C1—C10 119.22 (11) C12—C17—C16 119.43 (15)
C2—C1—C11 119.88 (11) C12—C17—H17 120.3
C10—C1—C11 120.75 (10) C16—C17—H17 120.3
C1—C2—C3 122.96 (12) O3—C18—O2 122.35 (13)
C1—C2—O2 117.29 (11) O3—C18—C19 126.61 (14)
C3—C2—O2 119.51 (11) O2—C18—C19 111.04 (11)
C4—C3—C2 118.48 (12) C24—C19—C20 119.62 (13)
C4—C3—H3 120.8 C24—C19—C18 117.73 (13)
C2—C3—H3 120.8 C20—C19—C18 122.65 (13)
C3—C4—C9 121.57 (12) C21—C20—C19 119.96 (13)
C3—C4—H4 119.2 C21—C20—H20 120.0
C9—C4—H4 119.2 C19—C20—H20 120.0
C6—C5—C9 121.36 (12) C22—C21—C20 119.92 (14)
C6—C5—H5 119.3 C22—C21—H21 120.0
C9—C5—H5 119.3 C20—C21—H21 120.0
C5—C6—C7 118.93 (12) C23—C22—C21 120.25 (14)
C5—C6—H6 120.5 C23—C22—H22 119.9
C7—C6—H6 120.5 C21—C22—H22 119.9
C8—C7—C6 122.50 (12) C22—C23—C24 120.17 (15)
C8—C7—O4 120.02 (11) C22—C23—H23 119.9
C6—C7—O4 117.35 (11) C24—C23—H23 119.9
C7—C8—C10 119.43 (11) C23—C24—C19 120.08 (14)
C7—C8—H8 120.3 C23—C24—H24 120.0
C10—C8—H8 120.3 C19—C24—H24 120.0
C4—C9—C5 122.07 (11) O5—C25—O4 122.70 (13)
C4—C9—C10 119.10 (11) O5—C25—C26 125.71 (13)
C5—C9—C10 118.82 (11) O4—C25—C26 111.58 (11)
C8—C10—C1 122.46 (11) C27—C26—C31 119.74 (13)
C8—C10—C9 118.92 (11) C27—C26—C25 118.19 (12)
C1—C10—C9 118.60 (11) C31—C26—C25 122.08 (12)
O1—C11—C12 122.06 (11) C28—C27—C26 119.85 (15)
O1—C11—C1 118.18 (11) C28—C27—H27 120.1
C12—C11—C1 119.75 (11) C26—C27—H27 120.1
C17—C12—C13 119.77 (13) C29—C28—C27 120.41 (16)
C17—C12—C11 121.24 (12) C29—C28—H28 119.8
C13—C12—C11 118.96 (12) C27—C28—H28 119.8
C14—C13—C12 120.03 (15) C30—C29—C28 119.99 (14)
C14—C13—H13 120.0 C30—C29—H29 120.0
C12—C13—H13 120.0 C28—C29—H29 120.0
C15—C14—C13 119.88 (16) C29—C30—C31 120.33 (14)
C15—C14—H14 120.1 C29—C30—H30 119.8
C13—C14—H14 120.1 C31—C30—H30 119.8
C14—C15—C16 120.63 (15) C30—C31—C26 119.66 (14)
C14—C15—H15 119.7 C30—C31—H31 120.2
C16—C15—H15 119.7 C26—C31—H31 120.2
C15—C16—C17 120.21 (17)
C10—C1—C2—C3 −2.69 (19) C1—C11—C12—C13 174.58 (12)
C11—C1—C2—C3 172.90 (11) C17—C12—C13—C14 −1.8 (2)
C10—C1—C2—O2 171.67 (10) C11—C12—C13—C14 176.31 (13)
C11—C1—C2—O2 −12.74 (17) C12—C13—C14—C15 0.1 (2)
C18—O2—C2—C1 112.74 (13) C13—C14—C15—C16 1.7 (3)
C18—O2—C2—C3 −72.69 (16) C14—C15—C16—C17 −1.8 (3)
C1—C2—C3—C4 0.7 (2) C13—C12—C17—C16 1.7 (2)
O2—C2—C3—C4 −173.51 (11) C11—C12—C17—C16 −176.40 (14)
C2—C3—C4—C9 1.19 (19) C15—C16—C17—C12 0.1 (3)
C9—C5—C6—C7 −0.61 (19) C2—O2—C18—O3 −4.3 (2)
C5—C6—C7—C8 −1.32 (19) C2—O2—C18—C19 175.60 (11)
C5—C6—C7—O4 −177.23 (11) O3—C18—C19—C24 −2.1 (2)
C25—O4—C7—C8 92.97 (14) O2—C18—C19—C24 178.03 (12)
C25—O4—C7—C6 −91.01 (14) O3—C18—C19—C20 177.25 (16)
C6—C7—C8—C10 1.59 (18) O2—C18—C19—C20 −2.63 (18)
O4—C7—C8—C10 177.40 (10) C24—C19—C20—C21 1.1 (2)
C3—C4—C9—C5 178.27 (12) C18—C19—C20—C21 −178.25 (13)
C3—C4—C9—C10 −1.06 (18) C19—C20—C21—C22 −0.4 (2)
C6—C5—C9—C4 −177.17 (12) C20—C21—C22—C23 −0.5 (2)
C6—C5—C9—C10 2.16 (18) C21—C22—C23—C24 0.8 (2)
C7—C8—C10—C1 178.38 (11) C22—C23—C24—C19 0.0 (2)
C7—C8—C10—C9 0.03 (17) C20—C19—C24—C23 −0.9 (2)
C2—C1—C10—C8 −175.64 (11) C18—C19—C24—C23 178.49 (14)
C11—C1—C10—C8 8.81 (17) C7—O4—C25—O5 −8.6 (2)
C2—C1—C10—C9 2.72 (17) C7—O4—C25—C26 172.23 (11)
C11—C1—C10—C9 −172.83 (10) O5—C25—C26—C27 −21.8 (2)
C4—C9—C10—C8 177.51 (10) O4—C25—C26—C27 157.33 (13)
C5—C9—C10—C8 −1.84 (16) O5—C25—C26—C31 157.80 (16)
C4—C9—C10—C1 −0.91 (16) O4—C25—C26—C31 −23.11 (18)
C5—C9—C10—C1 179.74 (10) C31—C26—C27—C28 1.4 (2)
C2—C1—C11—O1 −92.16 (14) C25—C26—C27—C28 −179.01 (15)
C10—C1—C11—O1 83.36 (14) C26—C27—C28—C29 −0.6 (3)
C2—C1—C11—C12 87.46 (14) C27—C28—C29—C30 −0.6 (3)
C10—C1—C11—C12 −97.02 (13) C28—C29—C30—C31 1.1 (2)
O1—C11—C12—C17 172.31 (13) C29—C30—C31—C26 −0.3 (2)
C1—C11—C12—C17 −7.30 (18) C27—C26—C31—C30 −0.9 (2)
O1—C11—C12—C13 −5.81 (18) C25—C26—C31—C30 179.50 (12)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C26–C31 and C5–C10 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C3—H3···O1i 0.95 2.30 3.2183 (16) 164
C14—H14···O5ii 0.95 2.60 3.520 (2) 164
C29—H29···Cg1iii 0.95 2.72 3.6396 (18) 162
C15—H15···Cg2ii 0.95 2.78 3.6397 (19) 150

Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5035).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659. [DOI] [PMC free article] [PubMed]
  5. Muto, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2040. [DOI] [PMC free article] [PubMed]
  6. Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. [DOI] [PMC free article] [PubMed]
  7. Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.
  8. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.
  9. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  10. Rigaku (2010). CrystalStructure Rigaku Corporation, Tokyo, Japan.
  11. Sakamoto, R., Sasagawa, K., Hijikata, D., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2454. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812052026/rz5035sup1.cif

e-69-0o210-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812052026/rz5035Isup2.hkl

e-69-0o210-Isup2.hkl (205.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812052026/rz5035Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES