Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 9;69(Pt 2):o216. doi: 10.1107/S160053681205194X

(Z)-4-Bromo-N-{(Z)-3-[(4-bromo-2,6-diisopropyl­phen­yl)imino]­butan-2-yl­idene}-2,6-diisopropyl­aniline

Cun Zhang a, Guo-Fan Wu a, Bao-Mei Huang a, Xiao-Quan Lu a,*
PMCID: PMC3569751  PMID: 23424497

Abstract

The title compound, C28H38Br2N2, is centrosymmetric with the mid-point of the central C—C bond of the butyl group located on an inversion center. The terminal benzene ring is approximately perpendicular to the central 1,4-diaza­butadiene mean plane [dihedral angle = 78.23 (3)°]. No hydrogen bonding or aromatic stacking is observed in the crystal structure.

Related literature  

For applications of diimine catalysts, see: Cotts et al. (2000); Ittel et al. (2000); Johnson et al. (1995); Zhang & Ye (2012).graphic file with name e-69-0o216-scheme1.jpg

Experimental  

Crystal data  

  • C28H38Br2N2

  • M r = 562.42

  • Monoclinic, Inline graphic

  • a = 9.099 (3) Å

  • b = 12.199 (4) Å

  • c = 13.566 (5) Å

  • β = 104.905 (5)°

  • V = 1455.2 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.80 mm−1

  • T = 296 K

  • 0.25 × 0.23 × 0.19 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.541, T max = 0.618

  • 7266 measured reflections

  • 2685 independent reflections

  • 1460 reflections with I > 2σ(I)

  • R int = 0.043

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.179

  • S = 0.94

  • 2685 reflections

  • 150 parameters

  • 84 restraints

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681205194X/xu5664sup1.cif

e-69-0o216-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681205194X/xu5664Isup2.hkl

e-69-0o216-Isup2.hkl (131.9KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681205194X/xu5664Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 20927004, 21175108 and 20875077), the Natural Science Foundation of Gansu Province (Nos. 0803RJZA105, 096RJZA121 and 096RJZA122) and the Key Laboratory of Polymer Materials of Gansu Province, China.

supplementary crystallographic information

Comment

In recent years, Ni(II)/Pd(II)-α-diimine catalysts were greatly attracted attention due to their high catalytic activity and influence on product performance in olefin polymerization (Zhang & Ye, 2012; Johnson et al., 1995). It is well known that the polymerization conditions (such as the reaction olefin pressure, temperature etc.) and ligand structure had a great impact on catalytic activity and polymer properties (Cotts et al., 2000; Ittel et al., 2000).

In the solid state, the structure exhibits trans-conformation about the central C—C bond of the ligand backbone. Bond lengths and angles are within the expected range for α-diimines. The dihedral angle between the aryl ring and 1,4-diazabutadiene plane is 78.23 (3)°(Fig. 1). In the crystal packing, there is no hydrogen-bond between the molecules.

Experimental

Formic acid (0.5 ml) was added to a stirred solution of 2,3-butanedione (0.042 g, 0.49 mmol) and 4-Bromo-2,6-diisopropyl-phenylamine (0.250 g, 0.98 mmol) in methanol (20 ml). The mixture was refluxed for 24 h, then cooled and the precipitate was separated by filtration. The solid was recrystallized from dichloromethane/cyclohexane (v/v = 8:1), washed with cold ethanol and dried under vacuum to give the title ligand 0.21 g (75%). Anal. Calcd. for C28H38Br2N2: C, 59.79; H, 6.81; N,4.98; Found: C, 60.29; H, 6.95; N, 4.74.

Refinement

All hydrogen atoms were placed in calculated positions with C—H distances of 0.93 and 0.96 Å for aryl and methyl type H-atoms. They were included in the refinement in a riding model approximation, respectively. The H-atoms were assigned Uiso = 1.2 times Ueq of the aryl C atoms and 1.5 times Ueq of the methyl C atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, using 30% probability level ellipsoids.

Crystal data

C28H38Br2N2 F(000) = 580
Mr = 562.42 Dx = 1.284 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1370 reflections
a = 9.099 (3) Å θ = 2.9–21.4°
b = 12.199 (4) Å µ = 2.80 mm1
c = 13.566 (5) Å T = 296 K
β = 104.905 (5)° Block, yellow
V = 1455.2 (9) Å3 0.25 × 0.23 × 0.19 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 2685 independent reflections
Radiation source: fine-focus sealed tube 1460 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.043
φ and ω scans θmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −10→10
Tmin = 0.541, Tmax = 0.618 k = −12→14
7266 measured reflections l = −16→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179 H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.1P)2 + 0.7029P] where P = (Fo2 + 2Fc2)/3
2685 reflections (Δ/σ)max < 0.001
150 parameters Δρmax = 0.46 e Å3
84 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.35688 (8) 0.65673 (6) 0.10127 (7) 0.0922 (4)
C1 0.7029 (6) 0.8851 (4) 0.1392 (4) 0.0489 (12)
C2 0.5759 (6) 0.8270 (4) 0.1476 (4) 0.0533 (14)
H2 0.5247 0.8477 0.1958 0.064*
C3 0.5254 (6) 0.7392 (5) 0.0851 (4) 0.0539 (14)
C4 0.5971 (7) 0.7079 (4) 0.0117 (4) 0.0557 (15)
H4 0.5608 0.6482 −0.0301 0.067*
C5 0.7232 (7) 0.7651 (4) −0.0001 (5) 0.0585 (14)
C6 0.7756 (6) 0.8543 (4) 0.0646 (4) 0.0452 (13)
C7 0.7611 (8) 0.9814 (5) 0.2083 (5) 0.0662 (14)
H7 0.8701 0.9872 0.2130 0.079*
C8 0.6907 (11) 1.0865 (6) 0.1624 (7) 0.126 (3)
H8A 0.7162 1.0991 0.0990 0.188*
H8B 0.7283 1.1459 0.2084 0.188*
H8C 0.5822 1.0819 0.1505 0.188*
C9 0.7469 (11) 0.9636 (8) 0.3149 (6) 0.120 (3)
H9A 0.8150 1.0122 0.3607 0.180*
H9B 0.7725 0.8891 0.3348 0.180*
H9C 0.6443 0.9783 0.3175 0.180*
C10 0.8059 (9) 0.7265 (6) −0.0773 (6) 0.0804 (16)
H10 0.8666 0.7876 −0.0923 0.096*
C11 0.9126 (12) 0.6347 (7) −0.0315 (8) 0.132 (3)
H11A 0.9847 0.6606 0.0287 0.199*
H11B 0.9656 0.6101 −0.0802 0.199*
H11C 0.8555 0.5750 −0.0139 0.199*
C12 0.6986 (12) 0.6892 (8) −0.1768 (7) 0.126 (3)
H12A 0.6336 0.6323 −0.1632 0.189*
H12B 0.7566 0.6616 −0.2214 0.189*
H12C 0.6378 0.7500 −0.2086 0.189*
C13 0.9228 (6) 0.9765 (4) −0.0034 (4) 0.0512 (14)
C14 0.7932 (7) 1.0159 (6) −0.0879 (5) 0.081 (2)
H14A 0.8104 0.9956 −0.1523 0.122*
H14B 0.7856 1.0942 −0.0843 0.122*
H14C 0.7003 0.9831 −0.0812 0.122*
N1 0.9141 (5) 0.9060 (3) 0.0633 (3) 0.0504 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0812 (6) 0.0846 (6) 0.1286 (8) −0.0381 (4) 0.0595 (5) −0.0188 (4)
C1 0.053 (3) 0.045 (3) 0.054 (3) −0.005 (2) 0.023 (2) −0.001 (2)
C2 0.053 (3) 0.054 (3) 0.058 (4) −0.001 (3) 0.023 (3) −0.001 (3)
C3 0.055 (3) 0.052 (3) 0.060 (4) −0.011 (3) 0.026 (3) 0.005 (3)
C4 0.070 (4) 0.034 (3) 0.066 (4) −0.014 (3) 0.024 (3) −0.004 (3)
C5 0.075 (3) 0.043 (3) 0.070 (3) −0.012 (3) 0.043 (3) 0.001 (3)
C6 0.046 (3) 0.037 (3) 0.055 (3) −0.005 (2) 0.017 (3) 0.008 (2)
C7 0.076 (3) 0.062 (3) 0.067 (3) −0.015 (3) 0.028 (3) −0.015 (3)
C8 0.145 (7) 0.070 (5) 0.145 (6) −0.001 (5) 0.005 (6) −0.036 (5)
C9 0.155 (7) 0.131 (6) 0.083 (5) −0.052 (5) 0.045 (5) −0.038 (5)
C10 0.100 (4) 0.066 (3) 0.095 (4) −0.016 (3) 0.060 (3) −0.018 (3)
C11 0.131 (7) 0.129 (6) 0.163 (7) 0.022 (5) 0.085 (6) −0.026 (6)
C12 0.153 (7) 0.147 (6) 0.100 (6) −0.030 (6) 0.073 (5) −0.040 (5)
C13 0.053 (3) 0.045 (3) 0.059 (4) −0.006 (2) 0.019 (3) 0.007 (3)
C14 0.059 (4) 0.083 (5) 0.093 (5) −0.012 (3) 0.005 (4) 0.039 (4)
N1 0.052 (3) 0.044 (3) 0.059 (3) −0.006 (2) 0.022 (2) 0.005 (2)

Geometric parameters (Å, º)

Br1—C3 1.894 (5) C9—H9A 0.9600
C1—C2 1.384 (7) C9—H9B 0.9600
C1—C6 1.396 (7) C9—H9C 0.9600
C1—C7 1.511 (8) C10—C11 1.507 (11)
C2—C3 1.371 (7) C10—C12 1.517 (11)
C2—H2 0.9300 C10—H10 0.9800
C3—C4 1.376 (8) C11—H11A 0.9600
C4—C5 1.387 (7) C11—H11B 0.9600
C4—H4 0.9300 C11—H11C 0.9600
C5—C6 1.402 (7) C12—H12A 0.9600
C5—C10 1.513 (8) C12—H12B 0.9600
C6—N1 1.414 (7) C12—H12C 0.9600
C7—C8 1.495 (10) C13—N1 1.265 (6)
C7—C9 1.501 (9) C13—C14 1.497 (8)
C7—H7 0.9800 C13—C13i 1.498 (10)
C8—H8A 0.9600 C14—H14A 0.9600
C8—H8B 0.9600 C14—H14B 0.9600
C8—H8C 0.9600 C14—H14C 0.9600
C2—C1—C6 118.8 (5) H9A—C9—H9B 109.5
C2—C1—C7 120.9 (5) C7—C9—H9C 109.5
C6—C1—C7 120.2 (5) H9A—C9—H9C 109.5
C3—C2—C1 120.2 (5) H9B—C9—H9C 109.5
C3—C2—H2 119.9 C11—C10—C5 109.2 (6)
C1—C2—H2 119.9 C11—C10—C12 110.1 (7)
C2—C3—C4 121.2 (5) C5—C10—C12 112.8 (6)
C2—C3—Br1 119.7 (4) C11—C10—H10 108.2
C4—C3—Br1 119.0 (4) C5—C10—H10 108.2
C3—C4—C5 120.3 (5) C12—C10—H10 108.2
C3—C4—H4 119.8 C10—C11—H11A 109.5
C5—C4—H4 119.8 C10—C11—H11B 109.5
C4—C5—C6 118.4 (5) H11A—C11—H11B 109.5
C4—C5—C10 119.8 (5) C10—C11—H11C 109.5
C6—C5—C10 121.7 (5) H11A—C11—H11C 109.5
C1—C6—C5 121.1 (5) H11B—C11—H11C 109.5
C1—C6—N1 118.6 (5) C10—C12—H12A 109.5
C5—C6—N1 119.9 (5) C10—C12—H12B 109.5
C8—C7—C9 113.0 (7) H12A—C12—H12B 109.5
C8—C7—C1 111.3 (5) C10—C12—H12C 109.5
C9—C7—C1 112.5 (5) H12A—C12—H12C 109.5
C8—C7—H7 106.5 H12B—C12—H12C 109.5
C9—C7—H7 106.5 N1—C13—C14 125.7 (5)
C1—C7—H7 106.5 N1—C13—C13i 116.6 (6)
C7—C8—H8A 109.5 C14—C13—C13i 117.8 (6)
C7—C8—H8B 109.5 C13—C14—H14A 109.5
H8A—C8—H8B 109.5 C13—C14—H14B 109.5
C7—C8—H8C 109.5 H14A—C14—H14B 109.5
H8A—C8—H8C 109.5 C13—C14—H14C 109.5
H8B—C8—H8C 109.5 H14A—C14—H14C 109.5
C7—C9—H9A 109.5 H14B—C14—H14C 109.5
C7—C9—H9B 109.5 C13—N1—C6 122.2 (4)
C6—C1—C2—C3 1.6 (8) C4—C5—C6—N1 172.3 (5)
C7—C1—C2—C3 −179.3 (5) C10—C5—C6—N1 −4.1 (9)
C1—C2—C3—C4 −1.3 (9) C2—C1—C7—C8 −90.6 (8)
C1—C2—C3—Br1 177.3 (4) C6—C1—C7—C8 88.5 (8)
C2—C3—C4—C5 0.2 (9) C2—C1—C7—C9 37.4 (8)
Br1—C3—C4—C5 −178.4 (4) C6—C1—C7—C9 −143.5 (6)
C3—C4—C5—C6 0.4 (9) C4—C5—C10—C11 −81.6 (8)
C3—C4—C5—C10 176.9 (6) C6—C5—C10—C11 94.7 (8)
C2—C1—C6—C5 −0.9 (8) C4—C5—C10—C12 41.1 (9)
C7—C1—C6—C5 180.0 (5) C6—C5—C10—C12 −142.6 (7)
C2—C1—C6—N1 −173.4 (5) C14—C13—N1—C6 0.5 (9)
C7—C1—C6—N1 7.5 (8) C13i—C13—N1—C6 −179.2 (6)
C4—C5—C6—C1 −0.1 (8) C1—C6—N1—C13 −106.2 (6)
C10—C5—C6—C1 −176.4 (6) C5—C6—N1—C13 81.2 (7)

Symmetry code: (i) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5664).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cotts, P. M., Guan, Z., McCord, E. F. & McLain, S. J. (2000). Macromolecules, 33, 6945–6952.
  4. Ittel, S. D., Johnson, L. K. & Brookhart, M. (2000). Chem. Rev. 100, 1169–1203. [DOI] [PubMed]
  5. Johnson, L. K., Killian, C. M. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 6414–6415.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Zhang, Z. & Ye, Z. (2012). Chem. Commun. 48, 7940–7942. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681205194X/xu5664sup1.cif

e-69-0o216-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681205194X/xu5664Isup2.hkl

e-69-0o216-Isup2.hkl (131.9KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681205194X/xu5664Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES