Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 12;69(Pt 2):o217. doi: 10.1107/S1600536813000305

meso-4,4′-Difluoro-2,2′-{[(3aR,7aS)-2,3,3a,4,5,6,7,7a-octa­hydro-1H-1,3-benzimidazole-1,3-di­yl]bis­(methyl­ene)}diphenol

Augusto Rivera a,*, Diego Quiroga a, Jaime Ríos-Motta a, Monika Kučeraková b, Michal Dušek b
PMCID: PMC3569752  PMID: 23424498

Abstract

In the crystal structure of the title compound, C21H24F2N2O2, there are two intra­molecular O—H⋯N hydrogen bonds involving the N atoms of the imidazolidine ring and the hy­droxy groups. The crystal studied was a meso compound obtained by the reaction of the aminal (2S,7R,11S,16R)-1,8,10,17-tetra­aza­penta­cyclo­[8.8.1.18,17.02,7.011,16]cosane with 4-fluoro­phenol. The imidazolidine ring has a twisted conformation with a CH—CH—N—CH2 torsion angle of 44.99 (14)° and, surprisingly, the lone pairs of the N atoms are disposed in a syn isomerism, making the title compound an exception to the typical ‘rabbit-ear effect’ in 1,2-diamines. In the crystal, molecules are linked via C—H⋯F hydrogen bonds, forming chains along the c-axis direction. These chains are linked via another C—H⋯F hydrogen bond, forming a three-dimensional network.

Related literature  

For a related structure, see: Rivera et al. (2011). For a discussion of the ‘rabbit-ear effect’ in 1,2-diamines, see: Hutchins et al.(1968).graphic file with name e-69-0o217-scheme1.jpg

Experimental  

Crystal data  

  • C21H24F2N2O2

  • M r = 374.4

  • Orthorhombic, Inline graphic

  • a = 15.4029 (4) Å

  • b = 18.7822 (4) Å

  • c = 6.1639 (2) Å

  • V = 1783.22 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.86 mm−1

  • T = 120 K

  • 0.31 × 0.15 × 0.11 mm

Data collection  

  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.222, T max = 1

  • 40310 measured reflections

  • 3177 independent reflections

  • 2984 reflections with I > 3σ(I)

  • R int = 0.049

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.077

  • S = 1.42

  • 3177 reflections

  • 250 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813000305/bx2435sup1.cif

e-69-0o217-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000305/bx2435Isup2.hkl

e-69-0o217-Isup2.hkl (131.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000305/bx2435Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.85 (2) 1.89 (2) 2.6540 (17) 148 (2)
O2—H2⋯N2 0.85 (2) 1.89 (2) 2.6741 (18) 152 (2)
C13—H1C13⋯F2i 0.96 2.43 3.2645 (19) 145
C17—H2C17⋯F2ii 0.96 2.54 3.356 (2) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Praemium Academiae project of the Academy of Sciences of the Czech Republic. DQ acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.

supplementary crystallographic information

Comment

Typically the 1,1-diamines tend to adopt a conformation in which the arrangement of electron pairs is anti periplanar. This behavior is known as `rabbit-ears' effect (Hutchins et al., 1968), however, this effect can be avoided by restriction of the 1,2-diamine in cyclic molecules. Recently, we reported the synthesis and the crystal structure of rac-4,4'-difluoro-2,2'-{[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a- octahydro- 1H-1,3-benzimidazole-1,3-diyl] bis(methylene)]}diphenol (Rivera et al., 2011), which has trans stereochemistry in the 1,2-diamine moiety with the lone pairs located in anti disposition avoiding the repulsive interactions. Now we reported the synthesis and crystal structure of the meso diastereoisomer with absolute configuration (R,S) where surprisingly the lone pairs of the N atoms are located in syn disposition.

The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. In the molecular structure of the title compound, the two N atoms of the heterocyclic ring interact with the H atoms of the hydroxy groups by intramolecular hydrogen bonds O—H···N, with N···O interatomic distance values around 2.66 Å, as well as the values of C—O and O—H bond lengths are 1.363 (3) Å and 0.83 (3) Å, respectively. The cyclohexane ring adopts a chair conformation while the heterocyclic ring arranged diagonally respect to the cyclohexane ring with dihedral angle between planes of 25.46 (96)°. The heterocyclic ring adopts an envelope conformation according to the value of the N2—C5—N1—C16 torsion angle of -7.91°. Bond angles around the N atoms N1 and N2 show a higher sp3 character to the N1 and N2 N atoms with pyramidalization involved in the hydrogen bond type interactions [Σ(CNC) N1 = 331.3°, Σ(CNC) N2 = 330.4°]. Moreover, the benzyl groups are located in an unexpected 1,3-diequatorial syn arrangement in the heterocyclic ring with dihedral angle between the planes containing the aromatic rings of 53.80 (30)°. The nonbonding pairs of amino groups involved in the intermolecular hydrogen bonding interactions do not suffer the `rabbit-ear effect' having a syn arrangement demonstrating that the title compound is an exception of this effect.

The stability of the crystal lattice of the title compound is related with non classical intermolecular interactions C—H···F that hold molecules linked in extended chains along the c axis. There are O—H···C and C—H···F weak interactions (table 1), the latter involve halogen group in molecular contact with an electron-deficient C—H bond of the aromatic ring of a second molecule.

Experimental

To a stirred solution of (2S,7R,11S,16R)-1,8,10,17-tetraazapentacyclo[8.8.1.1.8,170.2,7011,16] icosane (3) (276 mg, 1.00 mmol) in dioxane (3 ml) was added slowly dropwise p-fluorophenol (2.00 mmol) in dioxane (3 ml). After stirring for 15 min at room temperature, water (4 ml) was added and the mixture was heated at 40°C during 30 h. After cooling to room temperature, the solvent was removed in vacuo and the crude product was purified by chromatography on a silica column and subjected to gradient elution with light petroleum ether:ethyl acetate (yield 20%, m.p. = 441–443 K). Single crystals of (I) were grown from a CHCl3 solution by slow evaporation of the solvent at room temperature over a period of about 2 weeks. FT–IR (KBr) νmax: 3061, 2848, 1495, 1448, 1387, 1289, 1245, 1194, 1124, 1063, 979, 925, 814, 772, 737, 714, 692, 668 cm-1. 1H NMR (400 MHz, CDCl3) δ (p.p.m.): 1.36 (m, 2H), 1.55–1.79 (m, 6H), 3.11 (t, 2H, JH,H = 4.0 Hz), 3.39 (d, 1H,2JH,H = 6.4 Hz, NCH2N), 3.63 (d, 2H, 2JH,H = 14.0 Hz, ArCH2N), 3.84 (d, 1H, 2JH,H = 6.4 Hz, NCH2N), 4.03 (d, 2H, 2JH,H = 14.0 Hz, ArCH2N), 6.70 (dd, 2H, 3JH,F = 8.0 Hz, 4JH,H = 2.8 Hz, Ar—H), 6.76 (dd, 2H, 3JH,H = 8.0 Hz, 4JH,F = 4.8 Hz, Ar—H), 6.87 (td, 2H, 3JH,H = 8.0 Hz, 3JH,F = 8.2 Hz, 4JH,H = 3.1 Hz, Ar—H), 10.34 (s, 2H). 13C NMR (100 MHz, CDCl3) δ (p.p.m.): 21.5, 24.7, 55.0, 61.1, 73.4, 114.7 (d, 2JH,F = 23.5 Hz), 115.4 (d, 2JH,F = 22.5 Hz), 117.0 (d, 3JH,F = 6.3 Hz), 122.0 (d, 3JH,F = 6.9 Hz), 153.4 (d, 4JH,F = 2.0 Hz), 156.0 (d, 1JH,F = 236 Hz).

Refinement

All H atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms bonded C atoms were kept in ideal positions with C—H distance 0.96 Å during the refinement. The hydroxy H atoms were found in difference Fourier maps and their coordinates were refined freely. All H atoms were refined with thermal displacement coefficients Uiso(H) set to 1.5Ueq(C, O) for hydroxy groups and to 1.2Ueq(C) for the CH– and CH2– groups.

Figures

Fig. 1.

Fig. 1.

A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are drawn as dashed lines.

Crystal data

C21H24F2N2O2 F(000) = 792
Mr = 374.4 Dx = 1.394 Mg m3
Orthorhombic, Pna21 Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P -2ac -2n Cell parameters from 19583 reflections
a = 15.4029 (4) Å θ = 3.7–67.0°
b = 18.7822 (4) Å µ = 0.86 mm1
c = 6.1639 (2) Å T = 120 K
V = 1783.22 (8) Å3 Polygon shape, white
Z = 4 0.31 × 0.15 × 0.11 mm

Data collection

Agilent Xcalibur (Atlas, Gemini ultra) diffractometer 3177 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 2984 reflections with I > 3σ(I)
Mirror monochromator Rint = 0.049
Detector resolution: 10.3784 pixels mm-1 θmax = 67.1°, θmin = 3.7°
ω scans h = −18→18
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −22→22
Tmin = 0.222, Tmax = 1 l = −7→7
40310 measured reflections

Refinement

Refinement on F2 91 constraints
R[F2 > 2σ(F2)] = 0.030 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 1.42 (Δ/σ)max = 0.010
3177 reflections Δρmax = 0.15 e Å3
250 parameters Δρmin = −0.11 e Å3
0 restraints

Special details

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.08421 (6) 0.56542 (5) 0.39265 (19) 0.0421 (3)
F2 0.01983 (7) 0.08785 (5) −0.0670 (2) 0.0464 (3)
O1 0.26711 (8) 0.11965 (6) 0.5638 (2) 0.0355 (4)
O2 0.25923 (8) 0.37737 (7) 0.9132 (2) 0.0369 (4)
N1 0.33271 (8) 0.22874 (7) 0.3446 (2) 0.0231 (3)
N2 0.34150 (7) 0.33314 (6) 0.5557 (2) 0.0238 (4)
C1 0.20351 (10) 0.48809 (8) 0.4427 (3) 0.0283 (5)
C2 0.24882 (10) 0.44012 (8) 0.5731 (3) 0.0257 (4)
C3 0.41911 (9) 0.26109 (8) 0.3064 (2) 0.0230 (4)
C4 0.33424 (10) 0.40923 (8) 0.4988 (3) 0.0270 (4)
C5 0.20680 (10) 0.11405 (8) 0.4035 (3) 0.0274 (4)
C6 0.12823 (10) 0.51814 (8) 0.5218 (3) 0.0314 (5)
C7 0.21420 (10) 0.15102 (8) 0.2071 (3) 0.0254 (4)
C8 0.42966 (9) 0.30360 (8) 0.5158 (3) 0.0237 (4)
C9 0.49248 (9) 0.20825 (8) 0.2612 (3) 0.0267 (4)
C10 0.08186 (11) 0.09680 (8) 0.0901 (3) 0.0324 (5)
C11 0.52047 (10) 0.16567 (8) 0.4592 (3) 0.0299 (5)
C12 0.21650 (10) 0.42368 (8) 0.7793 (3) 0.0289 (5)
C13 0.07318 (10) 0.06018 (9) 0.2813 (3) 0.0343 (5)
C14 0.13982 (11) 0.45439 (9) 0.8526 (3) 0.0333 (5)
C15 0.29291 (10) 0.19587 (8) 0.1527 (3) 0.0259 (4)
C16 0.09529 (11) 0.50248 (9) 0.7232 (3) 0.0340 (5)
C17 0.45886 (10) 0.25765 (9) 0.7059 (3) 0.0275 (5)
C18 0.15019 (10) 0.14217 (8) 0.0499 (3) 0.0284 (4)
C19 0.13591 (10) 0.06908 (8) 0.4391 (3) 0.0331 (5)
C20 0.28071 (9) 0.28869 (8) 0.4282 (3) 0.0270 (4)
C21 0.54005 (11) 0.21507 (9) 0.6489 (3) 0.0321 (5)
H1c1 0.22435 0.499969 0.300447 0.034*
H1c3 0.422455 0.288956 0.176142 0.0276*
H1c4 0.339534 0.414724 0.344506 0.0325*
H2c4 0.381123 0.435124 0.564372 0.0325*
H1c8 0.473781 0.33942 0.502131 0.0284*
H1c9 0.541614 0.233235 0.203 0.032*
H2c9 0.475105 0.176214 0.147852 0.032*
H1c11 0.475029 0.133249 0.499311 0.0359*
H2c11 0.571355 0.138428 0.424659 0.0359*
H1c13 0.024629 0.029077 0.30491 0.0412*
H1c14 0.117621 0.442274 0.993384 0.0399*
H1c15 0.335179 0.167023 0.079409 0.0311*
H2c15 0.276748 0.23231 0.051253 0.0311*
H1c16 0.042627 0.524324 0.773234 0.0408*
H1c17 0.412966 0.225597 0.745425 0.033*
H2c17 0.470585 0.287446 0.828962 0.033*
H1c18 0.153672 0.167458 −0.08517 0.0341*
H1c19 0.13078 0.044152 0.574433 0.0397*
H1c20 0.235882 0.270824 0.521692 0.0324*
H2c20 0.258396 0.315914 0.308761 0.0324*
H1c21 0.585954 0.24712 0.60938 0.0386*
H2c21 0.557641 0.187359 0.772163 0.0386*
H1 0.3046 (14) 0.1501 (12) 0.523 (4) 0.0426*
H2 0.2959 (14) 0.3567 (12) 0.832 (4) 0.0443*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0366 (5) 0.0315 (5) 0.0583 (7) 0.0066 (4) −0.0117 (5) 0.0030 (5)
F2 0.0397 (5) 0.0393 (5) 0.0602 (7) −0.0079 (4) −0.0155 (5) −0.0076 (5)
O1 0.0400 (6) 0.0352 (6) 0.0312 (6) −0.0068 (5) −0.0009 (5) 0.0091 (5)
O2 0.0452 (7) 0.0398 (7) 0.0259 (6) 0.0104 (5) 0.0049 (6) 0.0029 (5)
N1 0.0233 (6) 0.0226 (6) 0.0234 (6) −0.0014 (5) 0.0034 (5) −0.0016 (5)
N2 0.0231 (6) 0.0199 (6) 0.0285 (7) 0.0004 (5) 0.0028 (5) −0.0003 (5)
C1 0.0308 (8) 0.0214 (7) 0.0328 (9) −0.0035 (6) −0.0036 (7) 0.0010 (6)
C2 0.0293 (7) 0.0185 (7) 0.0292 (8) −0.0026 (6) −0.0007 (7) −0.0035 (6)
C3 0.0240 (7) 0.0227 (7) 0.0224 (8) −0.0007 (6) 0.0037 (6) 0.0024 (6)
C4 0.0304 (7) 0.0203 (7) 0.0304 (9) −0.0002 (6) 0.0035 (6) 0.0009 (6)
C5 0.0292 (7) 0.0220 (7) 0.0311 (8) 0.0018 (6) 0.0045 (7) 0.0006 (6)
C6 0.0294 (8) 0.0208 (7) 0.0441 (10) −0.0006 (6) −0.0077 (7) −0.0044 (7)
C7 0.0266 (7) 0.0200 (7) 0.0295 (8) 0.0028 (6) 0.0035 (6) −0.0041 (6)
C8 0.0223 (6) 0.0221 (7) 0.0266 (8) −0.0011 (6) 0.0025 (6) −0.0003 (6)
C9 0.0246 (7) 0.0288 (8) 0.0267 (8) 0.0015 (6) 0.0063 (6) −0.0011 (6)
C10 0.0284 (8) 0.0241 (7) 0.0449 (11) 0.0006 (6) −0.0021 (7) −0.0076 (7)
C11 0.0287 (7) 0.0280 (7) 0.0331 (9) 0.0055 (6) 0.0031 (6) −0.0009 (7)
C12 0.0339 (8) 0.0249 (8) 0.0278 (9) 0.0003 (6) 0.0001 (7) −0.0046 (6)
C13 0.0287 (8) 0.0221 (8) 0.0522 (11) −0.0038 (6) 0.0107 (8) −0.0073 (7)
C14 0.0363 (8) 0.0314 (8) 0.0321 (9) −0.0007 (6) 0.0069 (7) −0.0081 (7)
C15 0.0290 (7) 0.0248 (7) 0.0239 (8) −0.0014 (6) 0.0009 (6) −0.0004 (6)
C16 0.0289 (7) 0.0273 (8) 0.0459 (11) −0.0001 (7) 0.0012 (7) −0.0109 (7)
C17 0.0279 (7) 0.0304 (8) 0.0241 (8) 0.0021 (6) 0.0024 (6) −0.0012 (6)
C18 0.0324 (8) 0.0224 (7) 0.0306 (9) 0.0005 (6) 0.0000 (7) −0.0033 (7)
C19 0.0354 (8) 0.0234 (7) 0.0405 (10) −0.0006 (6) 0.0102 (8) 0.0017 (7)
C20 0.0247 (7) 0.0241 (7) 0.0323 (9) −0.0002 (6) 0.0033 (7) −0.0036 (7)
C21 0.0299 (7) 0.0364 (9) 0.0302 (9) 0.0076 (7) 0.0000 (7) 0.0005 (7)

Geometric parameters (Å, º)

F1—C6 1.372 (2) C8—C17 1.523 (2)
F2—C10 1.370 (2) C8—H1c8 0.96
O1—C5 1.360 (2) C9—C11 1.522 (2)
O1—H1 0.85 (2) C9—H1c9 0.96
O2—C12 1.368 (2) C9—H2c9 0.96
O2—H2 0.85 (2) C10—C13 1.371 (3)
N1—C3 1.4818 (18) C10—C18 1.377 (2)
N1—C15 1.468 (2) C11—C21 1.523 (2)
N1—C20 1.4747 (19) C11—H1c11 0.96
N2—C4 1.4758 (19) C11—H2c11 0.96
N2—C8 1.4874 (18) C12—C14 1.390 (2)
N2—C20 1.4805 (19) C13—C19 1.381 (2)
C1—C2 1.395 (2) C13—H1c13 0.96
C1—C6 1.379 (2) C14—C16 1.387 (2)
C1—H1c1 0.96 C14—H1c14 0.96
C2—C4 1.509 (2) C15—H1c15 0.96
C2—C12 1.400 (2) C15—H2c15 0.96
C3—C8 1.526 (2) C16—H1c16 0.96
C3—C9 1.530 (2) C17—C21 1.526 (2)
C3—H1c3 0.96 C17—H1c17 0.96
C4—H1c4 0.96 C17—H2c17 0.96
C4—H2c4 0.96 C18—H1c18 0.96
C5—C7 1.400 (2) C19—H1c19 0.96
C5—C19 1.398 (2) C20—H1c20 0.96
C6—C16 1.373 (3) C20—H2c20 0.96
C7—C15 1.514 (2) C21—H1c21 0.96
C7—C18 1.392 (2) C21—H2c21 0.96
C5—O1—H1 107.6 (15) C13—C10—C18 122.66 (16)
C12—O2—H2 104.7 (16) C9—C11—C21 110.60 (13)
C3—N1—C15 114.79 (12) C9—C11—H1c11 109.47
C3—N1—C20 103.30 (11) C9—C11—H2c11 109.47
C15—N1—C20 112.07 (11) C21—C11—H1c11 109.47
C4—N2—C8 113.02 (11) C21—C11—H2c11 109.47
C4—N2—C20 111.82 (11) H1c11—C11—H2c11 108.32
C8—N2—C20 106.20 (11) O2—C12—C2 121.15 (14)
C2—C1—C6 118.79 (16) O2—C12—C14 118.45 (15)
C2—C1—H1c1 120.6 C2—C12—C14 120.40 (15)
C6—C1—H1c1 120.6 C10—C13—C19 118.45 (15)
C1—C2—C4 120.66 (14) C10—C13—H1c13 120.78
C1—C2—C12 119.20 (14) C19—C13—H1c13 120.78
C4—C2—C12 120.06 (14) C12—C14—C16 120.23 (16)
N1—C3—C8 100.13 (11) C12—C14—H1c14 119.89
N1—C3—C9 115.24 (12) C16—C14—H1c14 119.89
N1—C3—H1c3 113.88 N1—C15—C7 112.94 (13)
C8—C3—C9 114.52 (12) N1—C15—H1c15 109.47
C8—C3—H1c3 114.61 N1—C15—H2c15 109.47
C9—C3—H1c3 99.29 C7—C15—H1c15 109.47
N2—C4—C2 111.48 (12) C7—C15—H2c15 109.47
N2—C4—H1c4 109.47 H1c15—C15—H2c15 105.76
N2—C4—H2c4 109.47 C6—C16—C14 118.49 (15)
C2—C4—H1c4 109.47 C6—C16—H1c16 120.75
C2—C4—H2c4 109.47 C14—C16—H1c16 120.75
H1c4—C4—H2c4 107.38 C8—C17—C21 111.23 (13)
O1—C5—C7 122.28 (13) C8—C17—H1c17 109.47
O1—C5—C19 117.78 (15) C8—C17—H2c17 109.47
C7—C5—C19 119.93 (15) C21—C17—H1c17 109.47
F1—C6—C1 118.40 (16) C21—C17—H2c17 109.47
F1—C6—C16 118.73 (14) H1c17—C17—H2c17 107.66
C1—C6—C16 122.88 (16) C7—C18—C10 119.35 (16)
C5—C7—C15 122.18 (14) C7—C18—H1c18 120.33
C5—C7—C18 118.99 (14) C10—C18—H1c18 120.32
C15—C7—C18 118.65 (14) C5—C19—C13 120.61 (16)
N2—C8—C3 103.77 (11) C5—C19—H1c19 119.7
N2—C8—C17 110.70 (12) C13—C19—H1c19 119.7
N2—C8—H1c8 113.54 N1—C20—N2 105.82 (11)
C3—C8—C17 112.67 (12) N1—C20—H1c20 109.47
C3—C8—H1c8 111.6 N1—C20—H2c20 109.47
C17—C8—H1c8 104.79 N2—C20—H1c20 109.47
C3—C9—C11 113.83 (13) N2—C20—H2c20 109.47
C3—C9—H1c9 109.47 H1c20—C20—H2c20 112.89
C3—C9—H2c9 109.47 C11—C21—C17 109.50 (13)
C11—C9—H1c9 109.47 C11—C21—H1c21 109.47
C11—C9—H2c9 109.47 C11—C21—H2c21 109.47
H1c9—C9—H2c9 104.73 C17—C21—H1c21 109.47
F2—C10—C13 118.53 (14) C17—C21—H2c21 109.47
F2—C10—C18 118.81 (16) H1c21—C21—H2c21 109.45

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.85 (2) 1.89 (2) 2.6540 (17) 148 (2)
O2—H2···N2 0.85 (2) 1.89 (2) 2.6741 (18) 152 (2)
O1—H1···C15 0.85 (2) 2.45 (2) 2.937 (2) 117.4 (18)
O2—H2···C4 0.85 (2) 2.35 (2) 2.867 (2) 119.3 (19)
C13—H1C13···F2i 0.96 2.43 3.2645 (19) 145
C17—H2C17···F2ii 0.96 2.54 3.356 (2) 142

Symmetry codes: (i) −x, −y, z+1/2; (ii) x+1/2, −y+1/2, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2435).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact, Bonn, Germany.
  3. Hutchins, R. O., Kopp, L. D. & Eliel, E. L. (1968). J. Am. Chem. Soc. 90, 7174–7175.
  4. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  5. Petříček, V., Dusěk, M. & Palatinus, L. (2006). JANA2006 Institute of Physics, Prague, Czech Republic.
  6. Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o1542. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813000305/bx2435sup1.cif

e-69-0o217-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000305/bx2435Isup2.hkl

e-69-0o217-Isup2.hkl (131.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000305/bx2435Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES